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ABSTRACT 

Accelerated bridge construction (ABC) is increasingly desired and needed, due to the aging 

transportation infrastructure across the United States and the always-growing demand placed on our 

nation’s highway system. Precast concrete is a common way to incorporate ABC techniques. Advantages 

over typical cast-in-place concrete methods include speed of field construction, improved quality 

control, and decrease in detoured traffic during construction, among others. However, precast concrete 

structures have not been used to their full potential in high seismic regions, due to the deficiency of 

precast concrete connections in past earthquake events. The California Department of Transportation 

(Caltrans) is eager to incorporate ABC methods if connections suitable for high seismic regions can be 

developed. Therefore, a study has been conducted to investigate the inverted-tee cap beam and I-

shaped girder bridge system for its viability for implementation by Caltrans. A large-scale experimental 

investigation of the bridge system was conducted, verifying that the system has excellent potential for 

such use. The study identified an as-built connection detail that has been previously incorporated by 

Caltrans as being capable of providing an integral moment girder-to-cap connection. However, the study 

also introduced an improved connection detail utilizing grouted unstressed strands, similar to those 

used in post-tensioning applications, that has the promise of providing an even better connection 

alternative. A follow-up large-scale experimental study was conducted to provide a detailed 

investigation of the improved detail. In addition, the follow-up study was used to quantify the 

performance of another new girder-to-cap connection detail utilizing looped strands and dowel bars. 

Both connection details were verified to be very constructible and to provide excellent seismic 

performance, even when subjected to vertical acceleration demands significantly beyond typical design 

recommendations. Along with connection behavior, these experimental studies were used in 

conjunction with analytical approaches to investigate current approaches related to load distribution in 

integral bridges. This work showed that current recommendations are overly conservative in the 

amount of the column seismic moment that is required to be carried by adjacent girders in the 

superstructure. A better distribution model, based on the relative stiffness of the superstructure 

components, is proposed that matches well with the analytical and experimental results from this study 

and three other large-scale experimental seismic studies. Finally, analytical approaches for the 

incorporation of vertical acceleration effects were considered, and the results were used to verify the 

observed experimental performance of the proposed girder-to-cap connection details. 
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CHAPTER 1. INTRODUCTION 

1.1. Historical Background 

Structures are vital to our present-day way of life. However, structures can at times become our 

worst enemy during earthquake events, as deaths that occur due to earthquakes are usually related to 

structural failures and not pure natural phenomena. Bridges are one of the most common types of 

structures, vital to transportation infrastructure around the world. The prevalence of bridges in almost 

any part of the world means that there will be bridges that are affected by earthquakes, no matter 

where they strike. In the United States, the west coast region is well known for its vulnerability to 

earthquakes. As such, the states in this region have been active for decades in improving bridge systems 

to be better suited to withstand earthquake loads. 

The state of California, as of 2010, had over 24,500 highway bridges (Shoup et al., 2011). California, 

like many other states, has been plagued by budget problems due to recent economic turmoil, so 

upkeep on the aging bridge infrastructure is a large concern. The average age of bridges in California is 

44.4 years, with more than 8300 bridges over fifty years old (Shoup et al., 2011). Given that the current 

seismic design philosophy is primarily a product of the last 20-30 years, the seismic sufficiency of many 

of these bridges needed to be addressed, and the California Department of Transportation (Caltrans) 

has embarked on an ambitious and highly effective retrofit program. According to Caltrans’ data, over 

98% of the state-maintained bridges have undergone seismic safety retrofit work, as have about 45% of 

local agency bridges in the state (Caltrans, 2012). While some retrofit work remains, it is perhaps even 

more important to note that most bridges now in use have a rough life expectancy of about 50 years, 

and many bridges are nearing the end of this life span. Therefore, practical and easily-constructible 

methods for new construction of bridges that are seismic-sufficient must continue to be developed. 

Given California’s propensity for earthquakes, Caltrans has been at the forefront of the development of 

seismic solutions for earthquake loading for decades, both for retrofits and new construction. 

Historically, significant seismic events in California have produced awareness of seismic deficiencies 

in structural design and have led to improvements in design methods and construction. One of the first 

earthquakes that began to lead to developments in seismic design was the 1971 San Fernando 

earthquake. This magnitude 6.6 earthquake caused significant damage in the region about 15 miles 



www.manaraa.com

2 

 

 

northwest of downtown Los Angeles. According to the United States Geological Survey (USGS), “The 

most spectacular damage included the destruction of major structures at the Olive View and the 

Veterans Administration Hospitals and the collapse of freeway overpasses. “The newly built, 

earthquake-resistant buildings at the Olive View Hospital in Sylmar were destroyed” (Stover & Coffman, 

1993). Photographs of the highway damage are shown in Figure 1.1, along with a photograph of the 

damage to the Olive View structure is shown in Figure 1.2. A primary reason that structures that were 

thought to be “state-of-the-art” experienced significant damage is that seismic design at that time was 

primarily conducted using elastic design methods. Such elastic methods typically produced significant 

underestimation of seismic deflections, inadequately low and incorrect load patterns, and lack of 

consideration of inelastic structural actions (Priestley et al., 1996). The San Fernando earthquake 

exposed some of these deficiencies and brought about “a concerted effort to retrofit bridges, but the 

resolve eventually diminished” (Caltrans Seismic Advisory Board, 2003). 

Interestingly, no earthquake events that were large enough to rekindle interest in improved seismic 

design occurred until the 1987 Whittier Narrows earthquake, which had a relatively modest magnitude 

of 6.0 and produced extensive damage to a major nine-span bridge that was a part of the interstate 

highway system in the Los Angeles area (Stover & Coffman, 1993). Renewed vigor in the improvement 

of seismic sufficiency of bridges was finally realized after the 1989 Loma Prieta magnitude 6.9 

earthquake that produced some spectacular bridge failures (Housner & Thiel, 1990). A couple of failure 

examples from this event are shown in Figure 1.3 and Figure 1.4. Aggressive research following the 

Loma Prieta earthquake resulted in many developments in the years that followed, and the 1994 

Northridge earthquake offered a bit of a test-run that proved that the newly developed design and 

retrofit details that were being implemented were working. 
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(a) Collapsed highway ove

(b) Column damage, Foothills Freeway overpass (USGS, 1971)

Figure 1.1. Highway damage from San Fernando earthquake, 1971

3 

(a) Collapsed highway overpasses, Interstate 5 and Interstate 14 (USGS, 1971)

(b) Column damage, Foothills Freeway overpass (USGS, 1971) 

. Highway damage from San Fernando earthquake, 1971 
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Figure 1.2. Seismic damage to Olive View Hospital, 1971 (USGS, 2005) 

 

Figure 1.3. Bay Bridge collapse, 1989 (Eskenazi, 2009) 
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Figure 1.4. Cypress Street viaduct collapse, 1989 (USGS Online Publications Directory, 1999) 

1.2. Design Approaches 

The primary advancement in earthquake design in the years following the San Fernando earthquake 

and leading up to the Northridge earthquake was the transition from elastic design to ductile capacity 

design. With a more traditional elastic approach, the maximum expected earthquake loads are 

estimated and the structure is designed to remain elastic when exposed to the maximum loads. The 

capacity design philosophy implements a different approach. Rather than attempting to strong-arm the 

structure into remaining elastic under even the maximum earthquake loads, capacity design seeks to 

allow portions of the structure to behave inelastically under very large loads, recognizing that much 

more energy is dissipated in the structure if it is allowed to undergo inelastic deformation. The key to 

capacity design is that the inelastic behavior is restricted to carefully defined regions of the structure. 

These regions are typically referred to as plastic hinges, and they are intentionally detailed to maintain 

their strength even while undergoing plastic deformation. The plastic hinge formation allows the 

structure to undergo large deformations and dissipate large amounts of energy without producing 

inelastic behavior in the remainder of the structure. The result is that other regions of the structure 

remain elastic under large seismic loads, and the structure as a whole can experience large plastic 
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deformations while retaining its strength and preventing collapse, with the inelastic damage restricted 

to the plastic hinge regions. 

In bridges, designs typically seek to allow plastic hinge formation in the columns to prevent inelastic 

behavior in the superstructure. The columns become obviously crucial components to the seismic 

behavior of the bridge, needing to allow plastic hinge formation but maintain ability to support self-

weight along with circumstantial live load at the time of an earthquake. The superstructure elements are 

also critical for proper capacity design behavior, because the superstructure needs to remain elastic in 

order to form the plastic hinge in the column. To accomplish such a design, the overstrength loads and 

moments are determined that will develop in the portions of the structure that are designed to 

experience inelastic behavior during large seismic events. These overstrength actions are then used as 

design forces for the remaining portions of the structure using a more typical elastic design approach. 

1.3. Accelerated Bridge Construction 

Accelerated Bridge Construction (ABC) methods are increasingly desired to be implemented because 

of the many advantages such methods offer. ABC methods allow the total field construction time to be 

significantly reduced when compared to traditional field construction techniques. The primary 

underlying technique to a variety of ABC approaches is to use prefabricated components, thus diverting 

construction time from the field and into the controlled shop environment. Precast concrete members, 

in particular, are used heavily in ABC projects. If precast concrete members are utilized, components can 

simply be pieced together in the field, rather than all of the formwork, concrete placement, and curing 

time that is required with traditional cast-in-place concrete techniques. One example of the time-savings 

that can occur with the implementation of ABC methods is the U.S. 6 Keg Creek Bridge in Iowa, as shown 

in a construction photograph in Figure 1.5. According to AASHTO, the construction time on this project 

was cut from approximately six months using normal field construction methods to a total time of only 

two weeks (AASHTO, 2011). 
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Figure 1.5. Keg Creek Bridge constructed using ABC methods (AASHTO, 2011) 

Such reduction in construction time brings many tangential benefits. First, traffic diversion during 

construction is significantly decreased, and consequently traffic and jobsite safety is increased 

(International Federation of Structural Concrete, 2007). Reduced time in the field also serves to 

minimize the environmental impact of such projects. In addition, because ABC methods incorporate 

prefabricated components, further benefits are realized by moving much of the construction process 

into controlled shop environments. Some of the benefits of such prefabrication that have been observed 

and cited by the Federal Highway Administration (FHWA) over the years include improved 

constructability, increased quality, and lower life cycle costs (2006). 

A topic that is still being explored is the cost of implementing ABC methods versus conventional 

bridge construction. Since field labor tends to be more costly than shop work, the FHWA notes that ABC 

methods can at times reduce overall cost by decreasing field time (2010). However, since the use of ABC 

often implements new technology and introduces new challenges, the construction cost of ABC projects 

can be higher than construction cost with conventional methods. For example, the construction cost of 

the Iowa Department of Transportation’s Keg Creek Bridge project, which was a demonstration ABC 

project, was about 30 percent higher than the expected cost of a similar bridge built using conventional 
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construction techniques (Iowa Department of Transportation, 2012). The FHWA has done some work in 

comparing costs of completed ABC projects to costs of comparable conventional construction methods 

(FHWA, 2012). This investigation has shown that some completed ABC projects have cost more than 

would be expected using conventional methods, and some have cost less. However, the FHWA has 

concluded that the implementation of ABC is very cost-competitive when considering total cost of 

projects, including lost income due to diversion of traffic and costs related to environmental impact 

during construction. In addition, as ABC continues to be promoted and becomes more standard practice, 

the cost of ABC will continue to be reduced because of multiple-use benefits and increasing familiarity 

with the technology. 

As a result of the many benefits associated with ABC techniques, states around the country are 

pursuing a variety of ways to incorporate such methods. While brief searches related to almost any one 

of the many state departments of transportation around the country will yield some mention of and 

interest in ABC methods, states that the FHWA specifically cites as having undertaken significant ABC 

work include Utah, Florida, New York, Virginia, Iowa, Washington State, Louisiana, Texas, and South 

Carolina (FHWA, 2009 and 2010). Figure 1.6 shows a photograph of Utah’s Lambs Canyon Bridge 

constructed using ABC methods. 

While it is clear, given its widespread cross-country implementation, that the ABC era of bridge 

construction is being realized, bridge engineers in seismic regions have been hesitant to fully embrace 

ABC methods given the difficulties with connection design between prefabricated components. 

Historically, precast concrete components have been not been the first choice for structures designed to 

withstand significant earthquake loads, because the connections between such components have not 

been observed to behave well under such conditions. The connection failures in such structures prevent 

plastic hinge formation and have been observed to produce significant failures and even structural 

collapse. Figure 1.7 shows an example of such a failure from the 1994 Northridge Earthquake, where the 

members themselves remain largely intact but the damage in the connection regions causes overall 

structural failure. This failure, along with other failures in similar structures, was due to poor connection 

details and the choice of an undesirable load path more suited to typical gravity load requirements but 

not carefully designed and detailed for lateral seismic effects. 
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Figure 1.6. Lambs Canyon Bridge constructed using ABC methods (FHWA, 2010) 

Despite the difficulties with connections related to high seismic loads, a recent NCHRP scan study 

shows the interest in developing seismic-sufficient connections suitable for ABC techniques. The study, 

“Application of Accelerated Bridge Construction Connections in Moderate-to-High Seismic Regions,” 

sought to identify connection details that are used in the United States and have performed well under 

extreme events (NCHRP, 2011). It included an extensive survey of nine states with one or more extreme 

events and a known history of interest in ABC methods. 
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Figure 1.7. Collapsed parking structure, 1994 (SEAOC, 2010) 

Caltrans in particular is eager to develop connection details that are suited to quick field installation 

of precast components, yet reliable and durable when subjected to seismic loading. The development of 

such details will allow and promote the use of precast concrete components designed according to 

capacity design principles that can also incorporate ABC methods and all of the associated benefits. 

Increased experience with ABC methods in seismic regions will also be beneficial in quickly and 

responsibly replacing damaged structures after future earthquakes. 

1.4. Connection systems: inverted-tee 

Current bridge data from Caltrans shows that cast-in-place concrete accounts for over 70% of the 

material in bridge projects, while precast concrete accounts for less than 25% of the material (Caltrans, 

2010). A common design implemented by Caltrans is the use of cast-in-place box-girders integrally 

connected to a cast-in-place concrete cap beam (Caltrans, 2011). Cast-in-place designs are often still 

preferred because of the belief that such designs are more reliable in seismic events, tend to have lower 

construction costs, and can be better suited for longer spans. However, a different detail that utilizes an 

inverted-tee bent cap integrally connected to precast girders has been occasionally implemented for 
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decades for bridges with shorter spans. This detail is increasingly desirable since its configuration tends 

to allow quick installation of girders and thus works well in projects where ABC methods are needed or 

desired (Thiemann, 2009). It is typically implemented by using a cast-in-place column with an inverted-

tee cap beam that can be either cast-in-place or precast and set in place. Once the cap beam is 

positioned, the ledge, or corbel, on each side of the cap beam stem works well to support the dapped 

end of precast girders which can then be attached to the cap beam by the use of a cast-in-place 

diaphragm. The dapped-end-girder to inverted-tee concept is shown in Figure 1.8. Finally, the bridge 

deck can be cast-in-place over the completed superstructure. Such a configuration has recently been 

used in projects where existing structures are widened, to allow for relatively quick construction time 

and reduced field work. 

 

Figure 1.8. Inverted-tee and girder dapped end connection 

The inverted-tee bent cap is well-suited to allow the use of precast concrete girders. Using precast 

components is advantageous in utilizing ABC methods and the advantages discussed earlier. Also, the 

connection configuration of precast girders and inverted-tee cap beam allows increased clearance and 

thus reduced overall height from typical cap-girder configurations, since the girders can be located in 

line with the cap beam and do not need to be located on top of the cap beam. Such reduction in height 

Inverted-tee cap 

Precast girder 

Girder dapped 



www.manaraa.com

12 

 

 

will typically reduce material consumption and construction cost and will also normally be beneficial in 

improving seismic behavior (Snyder et al., 2011). 

The approach that is typically implemented for the design of the dapped end is a strut-and-tie 

analysis, because this region is congested and experiences a complex load path that does not follow 

simple beam behavior. Using the strut-and-tie method, the forces in the connection region of the girder 

are approximated as compression struts and tension ties, so the end region of the girder is treated not 

so much as a solid, three-dimensional element but more like a combination of two-dimensional truss 

elements. An example a strut-and-tie model for a dapped end is shown in Figure 1.9, where the solid 

lines represent tension ties and the dashed lines represent compression struts. Design implementation 

of this analytical model is accomplished by ensuring that sufficient reinforcement is provided to carry 

the forces in the tension ties while sufficient confinement is provided to ensure that the concrete can 

successfully transfer the compression strut forces. 

 

Figure 1.9. Example of strut-and-tie analysis for a girder dapped end (Sanders, 2002) 

1.5. Current Practice 

1.5.1. Moment capacity of inverted-tee connection 

Current Caltrans design recommendations stipulate that the cap-to-girder connection in the 

standard inverted-tee detail be regarded as a connection with zero moment resistance under seismic 

loading. Development of a “pin” connection at the girder-to-cap connection disallows the opportunity of 
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detailing the column top as a plastic hinge region, thus decreasing the effectiveness of the overall design 

for seismic regions. While Caltrans assumes the inverted-tee connection to behave as pinned under 

seismic loading, recent research (discussed more below) has shown that the connection in fact has 

significant moment capacity. This difference in assumed versus actual behavior leads to two items of 

interest. First, since the girder connection is assumed to be pinned under seismic loading, the top of the 

column may not be detailed appropriately for the moment that is actually developed in the cap-to-

column connection, leading to possible loss of confinement and poor structural performance in the 

upper region of the column. Second, from a design standpoint, the base of the column is designed for a 

significantly larger-than-realistic moment. The design of the foundation, accordingly, will be significantly 

oversized and significantly more costly than necessary for the actual loads that will be experienced. 

Proper recognition of the moment capacity of the girder connection will allow the design concept for 

the structure to be adjusted, detailing both the top and bottom of the column as moment (and, 

subsequently, plastic hinge) regions, and designing the foundation more cost effectively because of the 

reduction in column base moment. 

Significant analytical and experimental work examining the moment capacity of the inverted-tee 

connection detail has already been completed. This work included a large-scale experimental system 

test that was conducted jointly by Iowa State University, the University of California-San Diego, and 

Caltrans in 2010 (Snyder et. al., 2011). The test consisted of a full bridge system test that utilized two 

phases of testing on a fifty-percent scale model test unit of the center portion of a prototype bridge 

consisting of an inverted-tee cap beam and five precast I-shaped girders. The test incorporated an as-

built Caltrans connection for the five girders on one side of the cap beam while using an improved 

connection in the five girders on the opposite side of the cap beam. The system test revealed that 

although Caltrans currently treats the as-built connection as a pinned-connection, it actually has 

significant moment capacity and provided sufficient moment resistance to successfully form a plastic 

hinge at the top of the column. However, the system test also revealed that, while the as-built 

connection performed satisfactorily, the improved connection performed considerably better and 

exhibited higher moment strength than the as-built connection. In fact, deterioration of the as-built 

connection during the test prohibited full quantification of the improved connection, which remained 

essentially elastic for the entirety of the test. A detailed presentation of the experimental work in the 

system test, including further analysis of the results, are presented in Chapter 3 of this dissertation. 
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1.5.2. Seismic lateral load distribution 

Another limitation of current practice related to inverted-tee connections, and integral bridge 

connections in general, is that the load distribution of the column overstrength moment in a seismic 

event to the girders in the superstructure is generally approached very conservatively in an overly 

simplistic manner that does not recognize the true behavior of integral connections. Normal practice, 

including AASHTO’s LRFD specifications (AASHTO, 2010) and AASHTO’s seismic-specific 

recommendations (AASHTO, 2009) allow little or no distribution of the column moment due to lateral 

load beyond the girders that are immediately adjacent to the column, as shown in Figure 1.10. Caltrans’ 

own design practice, as specified in their Seismic Design Criteria (Caltrans, 2010) and Bridge Design Aids 

(Caltrans, 1989), allows for the distribution of the lateral load in a fanning-out pattern as the distance 

from the connection region increases, as shown in Figure 1.11. However, this pattern does not allow for 

any more distribution of the load in the girder-to-cap connection region, which as has been mentioned 

previously is the critical portion of the superstructure when prefabricated components are utilized. 

 

Figure 1.10. AASHTO distribution of column overstrength moment to girders (elevation) 
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Figure 1.11. Caltrans distribution of column overstrength moment to girders (plan) 

In contrast to the design recommendations, recent experimental work has shown significant 

distribution of the lateral load beyond the adjacent girders to intermediate and exterior girders in the 

superstructure. Strain-gage results from the Caltrans system test presented above have already been 

investigated to determine the amount of lateral load that was distributed from the center region near 

the column to the intermediate and exterior girders of the superstructure. This investigation has 

revealed that, as expected, significant levels of the lateral load were transferred to the intermediate and 

exterior girders, contrary to current design practice and recommendations. This distribution study has 

been extended to include experimental results from three other large scale tests that were conducted 

since the late 1990’s on integral bridge structures, including a four-girder precast concrete structure 

tested at the University of California-San Diego (Holombo et al., 2000) and two four-girder steel 

structures tested at Iowa State University in 2001 and 2002 (Sritharan et al., 2005). These structures 

have been found to have exhibited similar tendencies in providing significant load transfer of the lateral 

load to the exterior girders. 

Progress related to this work was presented in 2012 (Vander Werff and Sritharan, 2012), and a 

detailed investigation of this issue is presented in Chapter 4 of this dissertation. Better recognition of 

the actual load distribution will simplify the design of the transitions between column, cap, and girders, 
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since unrealistic amounts of load will no longer need to be designed for in the girder connections that 

are in immediate proximity to the column.  

1.5.3. Seismic vertical acceleration effects 

A facet of the seismic design of bridges that is under scrutiny is the ability of the structure to resist 

the effects of vertical acceleration during a seismic event. Historically, the focus of seismic load has been 

on lateral load due to horizontal ground motion. Primary focus on horizontal loading has merit, since 

horizontal seismic loads are typically significantly higher than the vertical seismic loads, maximum 

vertical seismic loads typically do not occur simultaneously with maximum horizontal seismic loads, and 

structures are typically better suited to handle vertical seismic loads since they are designed primarily to 

resist vertical dead and live loads. 

However, recent seismic events have revealed that vertical acceleration might also play a role in 

increasing damage to structures. One example of such an event was the February 22, 2011, earthquake 

in Christchurch, New Zealand. Figure 1.12 shows horizontal and vertical accelerations recorded during 

the earthquake, with maximum vertical accelerations in the vicinity of 2g. Such large vertical 

accelerations greatly exceeded the expected 2500-year motion vertical spectra (Kam and Pampanin, 

2011). The impact of large vertical accelerations on bridge structures has not been carefully considered 

in most seismic research. The contribution of vertical acceleration is of particular interest, since vertical 

acceleration will affect the vertical shear at the girder-to-cap connection, a region of the structure which 

is already subject to scrutiny for its seismic performance. The vertical acceleration effect in the 

connection region is of particular interest when considering the use of precast components versus cast-

in-place techniques, since the connection region is so critical for good seismic performance, as discussed 

earlier. 
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Figure 1.12. Recorded peak ground accelerations during Christchurch earthquake February 22, 2011 

(Kam and Pampanin, 2011) 

A detailed study of vertical acceleration effects on the inverted-tee bridge system has been 

conducted. Both the experimental results and different analytical approaches have been used to 

determine the sufficiency of integral bridge connections to withstand the influence of vertical ground 

motion. The results of this study are presented in Chapter 6 of this dissertation. 

1.6. Research Summary 

Challenges to the incorporation of precast concrete and ABC techniques in seismic regions have 

briefly been presented in the preceding sections, including lack of confidence in the integral 

performance of precast connections, inaccurate methods of load distribution, and absence of research 

related to behavior related to seismic vertical acceleration. These issues have been addressed in the 

work presented in this dissertation by advancing the analytical and experimental investigation of the 

behavior of precast concrete girder-to-cap connections. Design recommendations related to girder load 

distribution and connection design have been developed, and the influence of vertical acceleration on 

the girder connections has been explored in depth. This work will continue to promote and advance the 

use precast concrete in the implementation of ABC methods. 
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1.7. Dissertation Organization 

Following the introductory chapter, Chapter 2 presents a literature review of work related to seismic 

design for integral bridges and advancements in the area of accelerated bridge construction for such 

structures. Chapters 3, 4, 5, and 6 are written as journal articles. Chapter 3 presents the experimental 

investigation of the inverted-tee bridge system, examining the overall performance of the system and 

critiquing the sufficiency Caltrans’ current girder-to-cap connection detail. Chapter 4 focuses on the 

experimental study of two specific girder-to-cap connection details, validating their sufficiency for high 

seismic regions. Chapter 5 examines the lateral load distribution through integral bridge superstructures 

and shows how non-adjacent girders carry significant amounts of lateral load, contrary to the current 

design recommendations. Chapter 6 focuses on the analytical investigation of the system and 

superstructure connections, with a specific focus on the behavior of integral bridge structures subjected 

to the vertical acceleration. Chapter 7 concludes the dissertation, providing a summary of the research 

presented in the preceding chapters and final recommendations.  
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CHAPTER 2. LITERATURE REVIEW OF ABC IN SEISMIC REGIONS 

2.1. Introduction 

Significant effort has been devoted to researching the seismic behavior of bridges, especially in the 

last couple decades as the utilization of capacity design principles have been increasingly recognized to 

provide dramatic increase in performance in seismic events. This chapter examines the current state of 

the art regarding research and work related to seismic bridge engineering. Specific areas of interest in 

the literature review conducted for this research work include accelerated bridge construction in seismic 

regions, connections for precast and segmental construction in seismic regions, girder load distribution 

due to vertical and lateral loading, and vertical seismic ground motion effects. 

2.2. Accelerated Bridge Construction in Seismic Regions 

2.2.1. Background 

Accelerated bridge construction (ABC) is being increasingly promoted and pursued by departments 

of transportation all across the country. Increased transportation demand related to economic and 

population growth is fueling the desire for rapid construction of bridge projects. Also, the need for 

improvements to the aging transportation infrastructure throughout the United States has increased the 

urgency for fast and efficient construction techniques. While brief searches related to almost any of the 

state departments of transportation across the country will yield some references to ABC methods, 

states that the FHWA specifically cites as having undertaken significant ABC work include Utah, Florida, 

New York, Virginia, Iowa, Washington State, Louisiana, Texas, and South Carolina (FHWA, 2009 and 

2010). 

In the few years since the FHWA study mentioned above, interest and work related to ABC 

implementation has continued to increase. ABC’s current relevance in bridge engineering is evident in 

the Bridge Engineering Handbook, Second Edition: Construction and Maintenance (Chen and Duan, 

2014). An entire chapter in this updated handbook is devoted to ABC. This reference states that ABC 

“using streamlined engineering processes and prefabricated elements and systems (PBES) demonstrated 

its worth through several pilot projects and is being accepted as an innovative practice in today’s 

construction environment” (Chen and Duan, 2014). 
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2.2.2. Use of ABC in Seismic Regions 

While much information has been published related to the use of accelerated bridge construction, 

the main focus of this study is its implementation in seismic regions. Although the use of ABC techniques 

in seismic regions has been limited, considerable research work in the past several years has been 

devoted to adapting ABC methods to meet the structural requirements for seismic regions.   

The Transportation Research Board has put forth a concerted effort to promote the use of ABC 

techniques in seismic regions. NCHRP Report 698 (Marsh et al., 2011), the culmination of a 2011 study, 

provides a literature review of the connections and systems that are currently in use or being studied for 

use in ABC. The review focused on connections for particular locations (pile to pile cap connections, 

connections between column segments, substructure to superstructure connections, for example) as 

well as connections for particular force transfer mechanisms (grouted ducts, integral connections, 

hybrid connections, etc.) The study rated the various connections using several different categories, 

including readiness for implementation, potential time savings, potential performance, construction risk, 

seismic performance, inspectability, and durability. Suggested research from this study includes work 

related to integral connections that form part of the load path for longitudinal seismic loading. Examples 

of particular areas of research include looking at flush-soffit cap beam type bridges where longitudinal 

post-tensioning may or may not be used and innovative connecting approaches beyond those currently 

in use for cap beams. 

Ou et al. (2007) conducted an analytical study investigating the use of segmental columns for 

seismic regions. This study focused on a column detail that, at the time, had been primarily 

implemented in regions of low seismicity such as Florida, Texas, North Carolina, Virginia, and New 

Jersey. Using first a simplified analytical model incorporating a stat pushover approach followed by a 

detailed three-dimensional finite-element model and associated parametric study, this work 

investigated the appropriateness of a similar detail for high seismic regions such as California. Notable 

conclusions from this work included: (1) the simplified model for static pushover analysis provided a 

simple tool for the seismic design of segmental precast unbonded posttensioned columns, and (2) the 

3D FE model was capable of predicting the experimental cyclic behavior of segmental columns with 

good accuracy. This work was continued when Ou et al. (2010) conducted an experimental study. The 

test setup utilized vertical actuators for gravity load and a horizontal actuator for lateral load as shown 
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in Figure 2.1 to test four large-scale specimens. The study showed that the proposed columns 

performed well seismically, having significant ductility and good hysteretic behavior. Joint opening 

between the segments was found to contribute significantly in the drift and thus necessary to consider 

in design of similar systems for seismic regions. 

 

Figure 2.1. Segmental column test setup (Ou et at., 2010) 

The Washington State Department of Transportation (WSDOT) is actively working to increase 

implementation of ABC in seismic regions. A 2010 TRB article explains WSDOT’s effort to develop 

practice and implementation of ABC (Kyaleghi, 2010). 

2.3. Connections for Segmental Construction in Seismic Regions 

Already in the early 2000’s, NCHRP was conducting studies on connections between segmental 

elements to encourage the implementation of ABC techniques. NCHRP 519 (Miller et al., 2004) 

recommends details and specifications for the design of continuity connections for precast concrete 

girders, including examples illustrating the design of four precast girder types made continuous for live 

load. The intent of the study was to recommend connections that would achieve structural continuity 

and thus provide integral (moment and shear resistant) connections since traditional approaches to 

segmental construction often conservatively approximate segmental connections to be pins (i.e. simply 

supported). This study proposed several revisions to the AASHTO LRFD Bridge Design Specifications 
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related to the following: (1) the definition of continuous precast/prestressed concrete bridges, (2) time-

dependent material properties and analysis methods for continuous precast/prestressed concrete 

bridges, (3) effect of girder age on the connection continuity, (4) more realistic treatment of cracking 

effects in connection continuity, (5) design limits for service and strength limit states, (6) clarification of 

negative moment connection specifications, (7) possibilities for positive moment continuity connections, 

and (8) detailing requirements.  

 “Modeling of Jointed Connections in Segmental Bridges” (Veletzos and Restrepo, 2010) presents a 

segment joint modeling approach as a first step toward accurately estimating the seismic response of 

the superstructure joints due to input ground motions. The approach combines complex continuum 

mechanics with a simplified model utilizing rotational springs, including nonlinear tendon-grout slip 

response. The study included validation from large-scale experiments. 

Related to the study mentioned above, “Equivalent Unbonded Length for Modeling of Multistrand 

Tendons in Precast Segmental Construction” (Veletzos, 2014) presents results and conclusions from a 

large-scale experimental research program that investigated the debonding characteristics of 

multistrand tendons. This study concluded that tendon slip relative to grout is small in comparison with 

the slip between the duct and the surrounding concrete. The study also developed an equation to 

evaluate the equivalent unbounded length of multistrand tendons, intended to be directly applied to 

nonlinear modeling of the segment joint response. 

2.4. Girder Load Distribution in Integral Bridges 

2.4.1. Background 

Advantages associated with integral bridges have led to increased implementation, but design 

recommendations for such structures continue to be limited in some critical areas. The distribution of 

lateral load among girders in the superstructure is a particular aspect of integral bridge design that has 

not been addressed adequately. AASHTO, the standard for bridge design in the United States, provides 

very little information related to the distribution of lateral seismic loads. Other design documents 

directed specifically towards seismic regions, such as Caltrans’ Seismic Design Criteria (SDC, 2010) and 

Bridge Design Aids (BDA, 1995), contain helpful design recommendations but do not provide a detailed 

approach for seismic lateral load distribution. 
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Various investigations over the past fifteen years have touched on seismic lateral load distribution in 

the superstructure of integral bridge systems. Holombo et al. (2000) briefly looked at lateral load 

distribution alongside other issues of interest related to seismic loading of precast concrete 

superstructures. National Cooperative Highway Research Program (NCHRP) Project 12-54 (Wassef et al. 

2004, Sritharan et al. 2005, Vander Werff 2002), conducted jointly by Iowa State University and 

Modjeski and Masters, Inc., also investigated lateral load distribution as part of a larger research effort 

examining seismic issues in bridges with steel superstructures. While these and other projects have 

raised the issues related to seismic lateral load distribution based on experimental data, we are not 

aware of any systematic studies that investigate the issue including confirmation from test data and 

formulation of design recommendations. 

The investigations mentioned above primarily focused on examinations of the performance and 

sufficiency of bridge systems for high seismic regions. These studies utilized the construction and testing 

of large-scale experimental models of prototype integral bridge structures. The first test unit modeled a 

bridge with a 4-girder prestressed concrete superstructure (Holombo et al. 2000), using precast bulb-tee 

girders and referred to as the precast bulb-tee (PBT) model. The next two test units were based on 

bridges with 4-girder steel superstructures (Wassef et al. 2004), referred to as the steel pier cap (SPC) 

models. A more recent study by Caltrans investigated a test unit consisting of a 5-girder prestressed 

concrete superstructure (Snyder et al. 2011) including an inverted-tee bent cap is referred to as the 

inverted-tee bent cap (ITB) model. Fig. 1 provides views of the prototype structures for these 

investigations. The two SPC models were based on a similar prototype structure, and the PBT and ITB 

models were also based on a similar prototype structure, except for the number of girders. All of these 

tests had specific areas of focus; however, common areas of interest for each of the studies can be 

summarized as: (1) the design of a prototype bridge utilizing integral connection details capable of 

withstanding seismic loading, (2) the experimental validation of these details using large-scale test 

specimens, and (3) the formation of suitable seismic design recommendations based on the analytical 

and experimental findings. 

2.4.2. Current Design Practice 

The current AASHTO LRFD Bridge Design Specifications (2010) includes a well-established procedure 

for using distribution factors to appropriately distribute moment and shear due to vertical live loads to 
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interior (Section 4.6.2.2.2b) and exterior (4.6.2.2.2d) girders with concrete decks. The distribution 

factors are based on the spacing, span, and longitudinal stiffness of the beams and the depth of the slab. 

The distribution factor approach has been shown to be reliable for vertical live load by many studies 

(Zokaie et al. 1991, Kim and Nowak 1997, Mabsout et al. 1999, Barr et al. 2001, and Cai 2005, for 

example). More recent work as part of NCHRP Project 12-26 has continued with the live load 

distribution factor approach while simplifying the equations (Mertz 2007). 

Caltrans’ current approach to vertical live load distribution primarily incorporates the 

recommendations from AASHTO. Certain special live loads are distributed using the Lanell distribution 

approach (“Concrete box girder live load distribution by Lanell for special loads” 1998). Also, Caltrans 

makes some slight modifications to the AAHSTO approach for one-cell and two-cell box girder bridges 

(California Amendments to AASHTO LRFD Bridge Design Specifications 2011). However, the basis of the 

overall approach continues to be related to the spacing, span, and section properties of the girders and 

deck. While this distribution approach is very appropriate for distributing service-level live loads, it is not 

necessarily analogous to the vertical load distribution that occurs when the bridge structure is exercised 

by large displacements and experiences considerable cracking due to a large seismic event. For this 

reason, we introduce a slightly different stiffness-based approach to vertical load distribution during 

large seismic loads later in this paper, to be used primarily in conjunction with a similar lateral load 

distribution model in determining seismic load paths through the superstructure. 

Regarding lateral load distribution, Section 4.11.2 in the AASHTO Guide Specifications for LRFD 

Seismic Bridge Design (2009) states that the superstructure components and their connections “shall be 

designed to resist overstrength moments and shears of ductile columns.” Section 8.10 in these 

guidelines goes on to address the capacity design of the superstructure for integral bent caps in 

reinforced concrete structures. These guidelines limit the distribution of the column overstrength 

moment to an effective width equal to the sum of the diameter of the column and the depth of the 

superstructure. This issue was discussed previously in Chapter 1, along with Caltrans’ slight modification 

to AASHTO’s approach. 

  



www.manaraa.com

28 

 

 

2.5. Seismic Vertical Acceleration 

2.5.1. Background 

Research and development related to structural behavior due to seismic acceleration has been 

extensive in the last 20 to 30 years. However, the vast majority of this work has focused on horizontal 

seismic acceleration. This focus makes sense, since the horizontal motion from earthquake events is 

largely responsible for much of the structural damage. Also, horizontal effects introduce an entirely new 

direction of action to a traditionally-designed structure, whereas vertical effects occur in the same 

direction as gravity and live load effects that are have traditionally been the primary focus in structural 

design. Furthermore, maximum vertical effects typically occur very early during an earthquake event, 

whereas maximum horizontal effects tend to come a bit later in the event; therefore, maximum vertical 

and horizontal effects do not typically occur simultaneously. 

Despite reasonable justification for focusing on horizontal effects, interest in vertical seismic 

acceleration effects has increased in recent years. This interest has been generated in part by the simple 

observation that vertical effects have not been studied that much and therefore are not understood that 

well. This lack of understanding can lead to overly conservative approaches. For example, in certain 

Caltrans details, reinforcement is added to prevent failure due to vertical effects, without specific 

justification for including it. The reinforcement is included simply as a precaution, just in case vertical 

effects might cause a problem in the detail. Many designers realize that current approaches have little 

justification, so they desire to have a better understanding of the vertical acceleration effects so as to 

design for the more responsibly and perhaps more efficiently. 

In addition, many engineers and scientists involved with structural seismic behavior became more 

interested in vertical seismic effects as a result of the 2011 earthquake in Christchurch, New Zealand. 

This earthquake produced amazingly high vertical accelerations, even though its moment magnitude 

was only moderate. The vertical accelerations were to be contributing factors in some of the structural 

failures that produced large amounts of destruction and some loss of life. 

2.5.2. Models that approximate geological (seismologic) observations 

Many recent studies have investigated vertical peak ground acceleration (PGA) and have compared 

magnitudes of peak vertical accelerations with peak horizontal accelerations. In 2012, Tezcan and Cheng 
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presented a nonparametric approach to characterize vertical seismic effects. This approach was 

compared with a current empirical model for varying magnitude, distance, and local soil conditions. This 

reference states that it is common practice to set the ratio of vertical to horizontal spectrum (V/H) to 

2/3, but it is currently recognized that this practice is not always conservative. The analytical approach 

presented in this reference used magnitude, source-to-site distance, and shear wave velocity in the top 

30 m of the soil profile. It then employs a support vector machines algorithm to analytically develop V/H 

estimates; in short, as per the authors, this “algorithm learns the nonlinear relationship between a set of 

predictive variables and the V/H ratio directly from ground motion data.” 

In 2011, a study by Bommer et al. developed a model for the prediction of V/H ratios based on 

similar input as incorporated in Tezcan and Cheng’s study. This model was developed from strong-

motion accelerograms from the Middle East and Europe. Bommer et al. cite four current models for the 

prediction of V/H ratios based on magnitude, distance, and site class: Ambraseys et al. (1996), Kalkan 

and Bulkan (2004), Ambraseys and Douglas (2003), and Gulerce and Ambrahamson (2011). Bommer et 

al. cite major limitations to the first three models and developed their model using a similar approach to 

Gulerce and Abrahamson (2011). The model uses functional forms and regression analysis to estimate 

V/H ratios for PGA and 5%-damped spectral accelerations up to a period of 3.0 s. This study concluded 

that this approach provides a reasonable method to estimate the distribution of V/H ratios of ground 

motions generated by shallow crustal earthquakes in the regions considered for the study. The approach 

is very similar to the method developed by Gulerce and Abrahamson (2011) for North American regions.  

A Yang and Lee (2007) study documented the characteristics of vertical and horizontal ground 

motion during the earthquake in Niigata-ken Chuetsu, Japan, in 2004. This study showed that, for this 

data set, the ratio of peak vertical to horizontal acceleration was typically less than or equal to 2/3, but 

for a few sites the ratio was higher than 2/3 or even 1. The study also concluded that the ratio between 

peak velocity and peak acceleration depends on site-to-source distance and site condition, with ratios 

increasing as the epicentral distance increased or the soil stiffness decreased. Another finding was that 

the vertical response spectra tend to display low frequency contents at distant sites and high frequency 

contents at hard sites, whereas the effects of site condition and distance seemed to be less significant 

for horizontal response spectra. The study also showed that the peak value of the average vertical 

response spectra was lower and occurred at a period of about one half the horizontal spectra. Finally, 

the study concluded that the V/H ratio was strongly dependent on spectra frequency, site-to-source 
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distance, and site condition, being significantly higher than 2/3 at short periods and in the near-field 

region, and also exceeding 2/3 at very long periods (greater than 5 s). 

The studies presented thus far focus on the V/H ratio, where V is the magnitude of vertical PGA and 

H is the magnitude of horizontal PGA. However, very few of these investigations have compared the 

simultaneous magnitude of vertical and horizontal accelerations. One of the only studies that 

considered vertical accelerations and horizontal accelerations at the same time was a study by 

Ambraseys and Douglas (2000), along with a follow-up study in 2003. In fact, these studies mentioned 

the limitation of omitting consideration of simultaneous behavior, saying: “A major draw-back of the 

acceleration ratio … for practical purposes is that in an earthquake the maximum ground or response 

accelerations in the vertical and horizontal direction occur at different times.” In this study, extensive 

ground acceleration records from seismic events were used to develop an absolute vertical-to-

horizontal spectral ratio, qs = (SAv/SAh)max. Here, SAv and SAh are peak values of vertical and horizontal 

acceleration, adjusted for distance and site effects. This is comparable to the common V/H ratio. 

However, the study also developed a simultaneous vertical to horizontal spectral ratio, qi = utt,v(tmax)/SAh, 

where utt,v is the vertical response acceleration at time tmax, and tmax is the time at which the peak 

horizontal acceleration occurs. Figure 2.2 is a reproduction from the study which compares the absolute 

ratio (top set of curves) with the simultaneous ratio (bottom set of curves). For each set of curves, the 

solid line is for all earthquakes, the dashed line is for normal motion, the dashed line is for thrust 

motion, and the dash-dot line is for strike-slip motion. While the predicted absolute ratio for all 

earthquakes is between 0.3 and 0.4 for periods higher than 0.3 s, the predicted simultaneous ratio for all 

earthquakes is close to 0.1 for the same range, significantly lower. This difference indicates the 

unlikelihood of vertical and horizontal peaks occurring simultaneously. Also, in a follow-up study in 

2003, Ambraseys and Douglas mention that “the spectral response of the vertical acceleration and the 

attenuation of its spectral ordinates with magnitude and distance differ in amplitude and shape from 

those of the horizontal.” 
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Figure 2.2 Comparison of qs and qi 

However, especially for locations in close proximity to the fault, the peak vertical acceleration can 

happen occur almost simultaneously with the peak horizontal acceleration. Consider Figure 2.3, below 

for example, taken from Silva (1997). This figure shows acceleration time histories recorded for the 1994 

Northridge earthquake (on top, at the Pacoima Dam-downstream site), and for the 1989 Loma Prieta 

earthquake (on bottom, at the Corralitos site). Both of these locations were within 8 km of the fault 

responsible for the event, and the figures show that the vertical acceleration peaks (shown as the 

middle record for both) occurs almost simultaneously with the horizontal peaks; in fact, the horizontal 

and vertical components are very similarly shaped throughout each record. Likely of significance related 

to this behavior is that both sites were rock sites. It seems that for rock sites that are close to faults, 

horizontal and vertical demands may be expected to similar and simultaneous. This behavior for the 

rock sites is seen to contrast with acceleration data from two close (9 km or less distance from fault) soil 

sites from the Northridge event in Figure 2.4 (see next page), also from Silva. Both of these soil sites 

show short-period motion significantly affecting the vertical acceleration prior to the large horizontal 

motions; thus, the highest V/H ratios occur prior to the peak horizontal acceleration. 

 



www.manaraa.com

32 

 

 

 

Figure 2.3. Horizontal and vertical component acceleration time histories on rock sites for the 1994 

Northridge earthquake (top) and the 1989 Loma Prieta earthquake (bottom) 

While not reproduced here, additional investigation by Silva from the Northridge and Loma Prieta 

events showed that, at greater distances from the fault, both rock and soil sites behave more like the 

short-distance soil sites, exhibiting maximum vertical motions (and, consequently, large V/H ratios) 

related to short-period behavior prior to the occurrence of the peak horizontal ground motions. 

In conclusion, regarding the simultaneous nature of peak vertical and horizontal motions, it appears 

that, for sites close to faults, relation of vertical and horizontal motion depends largely on soil type and 

the consequent propagation of the seismic waves through the various types of soil mediums, whereas 

for sites at greater distances, vertical peak behavior tends to occur prior to horizontal behavior, for both 

rock and soil sites. Further research on this topic would be beneficial. 



www.manaraa.com

33 

 

 

 

Figure 2.4. Horizontal and vertical component acceleration time histories recorded during the 

Northridge earthquake 

The oft-cited number for the V/H ratio (note that this ratio is commonly reported as V/H, which is 

the inverse of the ratio mentioned in the question) is 2/3, is mentioned in the following recently 

accessed sources: Tezcan and Cheng, 2012; Bommer et al., 2011; Yang and Lee, 2007; Ambraseys and 

Douglas, 2003; and Ambraseys and Douglas, 2000. The 2003 Ambraseys and Douglas study, which 

replicates the figure provided above from their 2000 study, reports that the mean ratios for strike-slip 

and normal events are 0.73 and 0.61, respectively, and hence are quite close to the commonly accepted 

ratio of 2/3. 

Papazoglou and Elnashai (1996) provide an interesting compilation of data from a few notable 

events related to vertical acceleration that occurred prior to the time of the study. These events include 

the Northridge, California quake on January 17, 1994, where a vertical acceleration of 1.18g and V/H 

ratio of 1.79 were observed; and the Kobe, Japan quake on January 17, 1995, where observations 

included a vertical acceleration of 0.33g and V/H ratio of 1.21. [Also note that one of the vertical 

acceleration data points reported by Ambraseys and Douglas (2000) for the Kobe quake was 0.57g.] It 

does not appear that there are any documented vertical accelerations higher than the acceleration of 
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2.2g that was recorded during the Christchurch, New Zealand quake (New Zealand Journal of Geology 

and Geophysics, 2012). 

A sizeable amount of data is available for the two recent mega-quakes, Chile in 2010 with a 

magnitude of 8.8 (Boroschek et al., 2010) and Japan in 2011 with a magnitude of 9.1 (Kalkan and 

Sevilgen, 2011). For the Chile event, one reporting station recorded a peak vertical acceleration of 

0.702g with a peak horizontal acceleration of 0.564g, for a V/H ratio of 1.24. One other station from the 

Chile event recorded a vertical acceleration of 0.398g and a peak horizontal acceleration of 0.402g (V/H 

= 0.99), but most of the stations reported V/H ratios well below 1. For the Japan event, accessing data 

from 273 reporting stations and comparing recorded vertical and horizontal accelerations, one station 

recorded 0.406g vertical PGA with 0.374g horizontal PGA (note that this is the resultant of the peaks in 

the two horizontal directions), for a V/H ratio of 1.09. The average V/H ratio for the reporting stations 

from the Japan event was 0.41. A final note on the Japan data is that the maximum horizontal PGA 

reported from these stations was 2.699g, and the vertical PGA recorded at that station was 1.88, for a 

V/H ratio of 0.70 at the location of largest recorded acceleration. 

In summary, it appears that from this limited data, it is not that uncommon for vertical PGA values 

to exceed horizontal PGA values in large seismic events, as it occurred during about half of the large-

scale events that had data available. However, it should also be noted that these occurrences seem to 

be at only a small fraction of the stations that are affected by a particular seismic event; in other words, 

even in earthquakes that have reported V/H values higher than 1, it usually only happens in a very small 

portion of the area affected by the overall quake. It is well-documented that the larger V/H ratios tend 

to occur at short periods in the near-source distance range (see, for example Silva, 1997). 
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CHAPTER 3. A COST-EFFECTIVE INTEGRAL BRIDGE SYSTEM WITH PRECAST I-GIRDERS FOR SEISMIC 
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3.1. Abstract 

To promote accelerated bridge construction in seismic regions, a large-scale experimental 

investigation was conducted to examine the seismic sufficiency of precast concrete members in integral 

bridge superstructures. Such structures are not commonly used in high seismic regions, due to lack of 

design guides and overly conservative design approaches. A half-scale, 17.8-m (58.5-ft) long test unit 

modeling a portion of a prototype bridge incorporating a concrete column, I-shaped precast concrete 

girders, and an inverted-tee concrete cap beam has been used to experimentally verify that precast 

concrete members utilizing accelerated construction techniques can be used in integral superstructures 

and provide excellent seismic performance. The experimental work was also used to compare and 

contrast an as-built girder-to-cap connection detail with an improved detail. The results show that the 

as-built detail in existing bridges will satisfactorily resist positive and negative seismic moments and 

allow plastic hinges to develop at the column tops, even though this was not the original design intent. 

However, the improved detail is recommended for new bridges to avoid potential deterioration of the 

girder-to-cap connection. 

3.2. Introduction 

Accelerated bridge construction (ABC) is increasingly being pursued and promoted across the United 

States. Many states are dealing with aging transportation infrastructure along with increased 

transportation demand due to continuing economic and population growth (ASCE, 2013). Rapid 

construction of bridge projects to meet these needs is increasingly beneficial (Chen and Wuan, 2014). 
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Similarly to the rest of the country, the California Department of Transportation (Caltrans) is interested 

in the benefits that ABC techniques can provide, provided that seismic issues can be satisfactorily 

addressed. Caltrans’ desire to improve and increase the possibilities of ABC methods are highlighted in 

its “ABC Strategic plan” (2008a) and the related “Lessons Learned” report (2008b). 

The obvious primary benefit to the incorporation of ABC methods is the reduction of on-site 

construction time, along with the associated mitigation of long traffic delays. A common way to 

accomplish decreased time in the field is to utilize prefabricated components as much as possible. By 

using prefabricated elements, such as precast concrete members instead of cast-in-place concrete 

sections, certain additional secondary benefits are realized including the elimination of the need for 

falsework and an overall improvement in quality control by relocating production from unpredictable 

field conditions into a controlled shop environment. 

Even though ABC methods have notable advantages, the incorporation of such techniques in 

moderate-to-high seismic regions has been slowed because of the poor performance of precast 

structures, primarily buildings, in previous earthquake events. In fact, current bridge data from Caltrans 

shows that cast-in-place concrete accounts for over 70 percent of the material in bridge projects, while 

precast concrete accounts for around 5 percent (Hida, 2012). The vulnerability of precast structures has 

been largely due to inadequate performance of the connections and failing to ensure satisfactory load 

paths. Precast concrete structures were observed to experience connection failures, especially in 

buildings, in past seismic events including the Loma Prieta earthquake in 1989 (Housner and Thiel, 1990) 

and the Northridge earthquake in 1994 (SEAOC, 2010). 

Increased opportunities to incorporate ABC techniques and associated benefits will be realized if 

precast connections can be developed that are viable to implement in the field, do not significantly 

increase cost, and are able sustain large seismic demands. Capacity design is the most common 

approach in designing for earthquake loads. Using this approach, structures are designed to exhibit 

ductile behavior in certain locations that are specifically detailed to accommodate sufficient inelastic 

action while maintaining strength. These specially detailed regions are commonly referred to as plastic 

hinges. When a large seismic event occurs, the plastic hinge regions undergo inelastic deformation while 

the remainder of the structure continues to experience elastic behavior even when subjected to high 
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seismic demand. By incorporating this design philosophy, structures can be economically designed to 

accommodate large seismic lateral displacements and absorb the earthquake energy imparted to the 

structure in the form of hysteretic energy dissipation without collapsing and endangering the structure’s 

occupants. 

In bridges, the plastic hinge regions are generally restricted to the column ends to prevent 

significant damage to the bridge superstructure including the deck and allow easy inspection following a 

seismic event. The design of the bridge superstructure is critical, because it must have sufficient strength 

to maintain elastic behavior while allowing plastic hinge formation in the columns. The girder-to-cap 

connections in particular require careful attention for integral superstructure demands, where the 

girders are designed to have moment capacity across the cap beam. Integral designs are especially 

advantageous in seismic regions, since the moment continuity in the superstructure above the column 

bents provides a possible plastic hinge location in the column just below the cap beam. The 

development of girder-to-cap connections that facilitate rapid construction techniques in the field and 

provide sufficient shear and moment continuity for integral connections in high seismic regions will 

provide greater opportunity to utilize precast concrete members and their associated benefits. 

3.3. Research Significance 

To promote the use of precast concrete and ABC methods in seismic regions, the work detailed here 

was undertaken to accomplish two primary objectives. First, an existing inverted-tee cap beam concept 

has been utilized to facilitate precast dapped-end girders, but current Caltrans recommendations do not 

consider this detail to have sufficient moment capacity to be an integral connection under high seismic 

loading. Large-scale experimental testing of the existing detail could shed light on the connection’s 

seismic capability, and perhaps lead to better recommendations for its future implementation. Second, 

the development of an improved girder-to-cap connection detail that reliably provides an integral 

superstructure connection would be very beneficial in promoting the cost-effective use of precast 

concrete and cost-effective accelerated construction methods in seismic regions. 

3.4. A Precast Bridge System for Seismic Regions 

One of Caltrans’ preferred precast sections is the California I-Girder (Ma, 2008). A detail that has 

been utilized by Caltrans to facilitate the use of such I-girders is the inverted-tee bent cap concept, 
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shown in Figure 3.1. This system is well-suited for ABC implementation because its configuration allows 

quick installation of girders. It is typically implemented with cast-in-place columns and cast-in-place 

inverted-tee cap beams. Once the cap beam is positioned, the ledge on each side of the cap beam stem 

works well to support the dapped end of precast girders. The girder dapped ends can subsequently be 

integrated with the cap beam by the use of a cast-in-place diaphragm and appropriate connection 

reinforcement. Finally, the cast-in-place bridge deck can be placed over the completed superstructure. 

 

Figure 3.1. Inverted-tee bent cap concept 

Where the inverted-tee bent cap concept has been utilized by Caltrans, the superstructure has been 

designed according to current design recommendations (Caltrans, 2010b; Caltrans, 1995). The current 

recommendations anticipate the degradation of the positive moment connection due to large seismic 

displacements and the loss of tension continuity in the girder lower flange connection region. Therefore, 

the recommendations stipulate that the cap-to-girder connection be regarded as a connection with zero 

moment resistance under seismic loading. Regarding this connection as a “pin” under seismic loading 

has undesirable ramifications. Figure 3.2 provides a simple statics analysis for the base moment of the 

column, depending on whether the girder-to-cap connection is pinned or fixed. Figure 3.2a shows that, 
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with pinned superstructure connections, the substructure moment at the base of the column is HL, 

where H is the horizontal seismic design load and L is the column length. The analysis shown in Figure 

3.2b assumes that the capacity of the plastic hinges at the top and bottom of the column will be equal, 

resulting in a total superstructure moment and substructure moment of H/2 as shown. The moment 

connections in the superstructure provide an additional plastic hinge location and also significantly 

reduce the substructure moment, allowing the foundation cost to be reduced. 

  

 a. Pinned girder-to-cap connection b. Fixed girder-to-cap connection 

Figure 3.2. Influence of girder connection on column seismic moment demand 

Even with these design limitations imposed on the girder-to-cap connection, the inverted-tee 

concept has been utilized because of the benefits of using precast concrete girders over cast-in-place 

options. Development of girder-to-cap connections that provide full moment resistance will offer the 

possibility of incorporating the design approach presented in Figure 3.2b, resulting in a more 

competitive solution to cast-in-place concrete and enhancing the opportunity to incorporate ABC 

methods in high seismic regions. In addition, total cost benefits for precast structures such as reducing 

traffic impact and improving worker safety are not integrated into the construction cost of the bridge 

but are important advantages of such approaches. 
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To formulate the experimental plan, a prototype bridge utilizing 

developed as shown in Figure 3.3. The four

single-column bents, concrete inverted

girders per span. The prototype bridge was designed by a design team from PBS&J (currently Atkins) in 

San Diego, California, and independently confirmed by a research team at Iowa State Univer

design was based on AASHTO LRFD Bridge Design Specifications, Third Edition (2003) with Interims and 

California Amendments (2006b) following the guidelines from the Caltrans Bridge Design Aids (1995), 

Caltrans Bridge Design Specifications (2003),

The design utilized Caltrans’ deepest standard I

and single column bents to develop maximum demand in the cap and connection region. Detailed

information and design calculations for the prototype bridge can be found in Theimann (2009).

Figure 
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3.5. Prototype Bridge 

To formulate the experimental plan, a prototype bridge utilizing the inverted

. The four-span bridge incorporated reinforced concrete columns in 

column bents, concrete inverted-tee cap beams, and five precast, prestressed, I

girders per span. The prototype bridge was designed by a design team from PBS&J (currently Atkins) in 

San Diego, California, and independently confirmed by a research team at Iowa State Univer

design was based on AASHTO LRFD Bridge Design Specifications, Third Edition (2003) with Interims and 

California Amendments (2006b) following the guidelines from the Caltrans Bridge Design Aids (1995), 

Caltrans Bridge Design Specifications (2003), and Caltrans Seismic Design Criteria, version 1.5 (2006a). 

The design utilized Caltrans’ deepest standard I-girder section along with a five-girder superstructure 

to develop maximum demand in the cap and connection region. Detailed

information and design calculations for the prototype bridge can be found in Theimann (2009).

a. Longitudinal elevation 

 

b. Transverse section 

Figure 3.3. Prototype integral bridge structure 

the inverted-tee concept was 

span bridge incorporated reinforced concrete columns in 

tee cap beams, and five precast, prestressed, I-shaped concrete 

girders per span. The prototype bridge was designed by a design team from PBS&J (currently Atkins) in 

San Diego, California, and independently confirmed by a research team at Iowa State University. The 

design was based on AASHTO LRFD Bridge Design Specifications, Third Edition (2003) with Interims and 

California Amendments (2006b) following the guidelines from the Caltrans Bridge Design Aids (1995), 

and Caltrans Seismic Design Criteria, version 1.5 (2006a). 

girder superstructure 

to develop maximum demand in the cap and connection region. Detailed 

information and design calculations for the prototype bridge can be found in Theimann (2009). 
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3.6. Experimental Investigation 

The experimental investigation was designed to determine the seismic behavior of the bridge 

system and to carefully investigate and quantify the girder-to-cap connection performance. The 

experimental work was divided into two phases. The primary purposes for Phase I were to: (1) confirm 

the validity of the overall system for high seismic regions, (2) determine the capability of the girder-to-

cap connections to maintain elastic superstructure action up to high seismic displacements (i.e., the 

sufficiency of the girder connections to provide adequate resistance to develop plastic hinges in the 

column), and (3) compare and contrast the existing Caltrans girder-to-cap connection detail with an 

improved detail. The primary purpose of Phase II was to exercise the girder-to-cap connections to realize 

their full potential by applying connection demands beyond what would be permitted by the typical 

overstrength capacity of the column plastic hinge region. 

3.6.1. Test Unit Details 

The girder-to-cap connection that has been previously been utilized by Caltrans for the inverted-tee 

system is shown in Figure 3.4a, referred to here as the “as-built” connection detail. This detail utilizes 

dowel bars that pass through ducts in the webs of the precast girders near their dapped ends. After the 

girders are placed on the corbel of the inverted-tee, the dowel bars are grouted into place in the girder 

webs, and a cast-in-place concrete diaphragm is used to encase the dapped end and dowel bars, thus 

achieving connection continuity. 
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Figure 

For the detail to maintain its integral performance during seismic loading, it needs to successfully 

transfer vertical shear as well as positive and negative moments. Downward vertical shear in the as

detail is easily transferred from the girder dapped end to the ca

configuration of the dapped end on the corbel. The as

capacity, because the deck reinforcement provides tension continuity across the girder

dowel bars provide some resistance to upward shear and positive moment loading that could occur 

during a large seismic event. However, since the detail includes no tension continuity near the girder 

bottom flange, Caltrans currently anticipates rapid degradation

will commence under high positive moment action. Therefore, Caltrans recommendations currently 
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a. As-built detail 

b. Improved detail 

Figure 3.4. Girder-to-cap connection concepts 

o maintain its integral performance during seismic loading, it needs to successfully 

transfer vertical shear as well as positive and negative moments. Downward vertical shear in the as

detail is easily transferred from the girder dapped end to the cap beam corbel, due to the direct support 

configuration of the dapped end on the corbel. The as-built detail also has significant negative moment 

capacity, because the deck reinforcement provides tension continuity across the girder

bars provide some resistance to upward shear and positive moment loading that could occur 

during a large seismic event. However, since the detail includes no tension continuity near the girder 

bottom flange, Caltrans currently anticipates rapid degradation of the girder-to-cap connection region 

will commence under high positive moment action. Therefore, Caltrans recommendations currently 

 

 

o maintain its integral performance during seismic loading, it needs to successfully 

transfer vertical shear as well as positive and negative moments. Downward vertical shear in the as-built 

p beam corbel, due to the direct support 

built detail also has significant negative moment 

capacity, because the deck reinforcement provides tension continuity across the girder-to-cap joint. The 

bars provide some resistance to upward shear and positive moment loading that could occur 

during a large seismic event. However, since the detail includes no tension continuity near the girder 

cap connection region 

will commence under high positive moment action. Therefore, Caltrans recommendations currently 
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require that it be treated as a pin connection when subjected to seismic loading. One of the objectives in 

the experimental investigation was to determine whether Caltrans’ current treatment of the existing 

detail is overly simplistic. While the detail would deteriorate when subjected to large seismic 

displacements, the diaphragm, dowel bars, deck, and reinforcement would continue to provide 

measurable shear and moment strength. The load mechanisms that exist in this partially deteriorated 

state are difficult to pinpoint; thus, experimental work to enhance understanding of these mechanisms 

and more fully quantify their behavior would be beneficial to the design process and implementation of 

this detail. 

In addition to more fully quantifying the as-built detail, an additional objective was to develop an 

improved detail that would provide a more predictable load mechanism to supply the necessary shear 

and moment capacity. The main limitation with the as-built detail is the lack of positive moment tension 

continuity. To address this deficiency, the improved detail incorporates unstressed strands to provide 

tension continuity between the girder bottom flange and the cap beam corbel, as shown in Figure 3.4b. 

The strands are run through ducts in the bottom flange of the precast girder and continue across the 

girder-to-cap interface into aligning ducts in the cap beam. After the strands are placed, they are 

grouted in place to provide anchorage in the girder and cap. This connection detail has the same 

negative moment and vertical shear capabilities as the as-built detail, but it has the added benefit of 

positive moment and additional shear resistance across the connection interface provided by the 

addition of the grouted unstressed strands. 

3.6.2. Test Unit Configuration 

The large-scale experimental test unit was developed to investigate the overall system performance 

and to compare and contrast the capability of the as-built and improved connections. A schematic 

representation of the test configuration, along with a photograph, is provided in Figure 3.5. The test unit 

was designed at a 50 percent dimensional scale of the prototype structure. It modeled the full five-

girder width of the prototype on both sides of Bent 3, with the girder length extending approximately to 

the mid-span of the girders on either side of the column, as shown by the dashed region in Figure 3.3a. 

The termination of the girders at the location representing the prototype mid-span resulted in support 

locations at the approximate girder inflection points under horizontal seismic loading. Hold-downs were 

utilized to properly simulate the effects of gravity load in the girder-to-cap connection region; these 
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hold-downs were located at the approximate girder inflection points during the service

condition, with load application occurring in two stages as detailed in the next section

horizontal actuators, one at each end of the test unit, were used to apply quasi

loads, and pairs of vertical actuators at each end were used to provide vertical support and to 

accommodate the column growth expected due to the formation of pl

additional load to the superstructure. This type of support was accomplished by programming the 

vertical actuator control based on the predicted column growth at various horizontal displacement 

levels, following the procedure outlined by Holombo et al. (1998)

a. Schematic of Phase I configuration

b. Photograph of Phase II configuration

50 

downs were located at the approximate girder inflection points during the service

, with load application occurring in two stages as detailed in the next section

ctuators, one at each end of the test unit, were used to apply quasi-static horizontal seismic 

loads, and pairs of vertical actuators at each end were used to provide vertical support and to 

accommodate the column growth expected due to the formation of plastic hinges without introducing 

additional load to the superstructure. This type of support was accomplished by programming the 

vertical actuator control based on the predicted column growth at various horizontal displacement 

re outlined by Holombo et al. (1998). 

a. Schematic of Phase I configuration 

b. Photograph of Phase II configuration 

Figure 3.5. Inverted-tee test unit 

downs were located at the approximate girder inflection points during the service-load-only 

, with load application occurring in two stages as detailed in the next section. Two pairs of 

static horizontal seismic 

loads, and pairs of vertical actuators at each end were used to provide vertical support and to 

astic hinges without introducing 

additional load to the superstructure. This type of support was accomplished by programming the 

vertical actuator control based on the predicted column growth at various horizontal displacement 
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In order to test both the as-built and improved 

girders on one side of the inverted

improved detail was used for the girder

cap beam. Figure 3.6a provides a cross

improved detail on the left and the as

through the precast girder web and anchored in a cast

connection region. The only difference between the two connections was that unstressed post

tensioning strands were included in the improved connection, running continuously through ducts in the 

bottom flange of the girder and into ducts in the cap beam corbel. These strands were grouted in place 

after being positioned. In a prototype bridge utilizing this detail, the s

beam and continue into the girder on the far side of the cap beam, but since the improved connection 

was modeled only on one side of the test unit, the strands from the improved connection were 

terminated and anchored on the far side of the cap beam.

a. Section through cap beam connection region

b. Photograph of center girder connection prior to concrete placement

Figure 3.6
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built and improved connections without building two test units, the five 

girders on one side of the inverted-tee cap beam were connected using the as-built detail, while the 

improved detail was used for the girder-to-cap connection of the five girders on the opposit

a provides a cross-sectional view through the connection region, showing the 

improved detail on the left and the as-built detail on the right. Both details utilized dowel bars passing 

through the precast girder web and anchored in a cast-in-place concrete diaphragm surrounding the 

connection region. The only difference between the two connections was that unstressed post

included in the improved connection, running continuously through ducts in the 

bottom flange of the girder and into ducts in the cap beam corbel. These strands were grouted in place 

after being positioned. In a prototype bridge utilizing this detail, the strands would run through the cap 

beam and continue into the girder on the far side of the cap beam, but since the improved connection 

was modeled only on one side of the test unit, the strands from the improved connection were 

e far side of the cap beam. 

 

a. Section through cap beam connection region 

 

b. Photograph of center girder connection prior to concrete placement

6. Test unit girder-to-cap connection detail 

Strand 

Cap corbel 
reinforcement 

Column 

reinforcement 

connections without building two test units, the five 

built detail, while the 

cap connection of the five girders on the opposite side of the 

sectional view through the connection region, showing the 

Both details utilized dowel bars passing 

place concrete diaphragm surrounding the 

connection region. The only difference between the two connections was that unstressed post-

included in the improved connection, running continuously through ducts in the 

bottom flange of the girder and into ducts in the cap beam corbel. These strands were grouted in place 

trands would run through the cap 

beam and continue into the girder on the far side of the cap beam, but since the improved connection 

was modeled only on one side of the test unit, the strands from the improved connection were 

b. Photograph of center girder connection prior to concrete placement 
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Figure 3.6b provides a photograph of the cap connection region for the center girder. The five-girder 

configuration results in the center girders attaching to either side of the cap beam adjacent to the cap 

beam-to-column connection. Because of this connection proximity, the strand ducts in the cap beam for 

the center girder improved connection were curved around the column connection region. While the 

introduction of these curves was a concern in terms of feeding the strand through the ducts and 

successfully grouting after placement, it did not pose any challenges during construction. 

3.6.3. Construction 

Construction of the test unit was completed at the Charles Lee Powell Laboratories at the University 

of California, San Diego. In order to make the test unit as close to an actual inverted-tee bridge as 

possible, typical field construction practices and techniques were incorporated into the test unit 

construction. The footing and column were constructed first, and temporary shoring was erected 

around the column to support the construction of the inverted-tee cap beam. Figure 3.7 shows the cap 

beam atop the column prior to girder placement. The girders were fabricated offsite at a precast 

concrete production facility. Typical methods were used in the girder construction process; however, 

engineered wire mesh was used to provide the transverse reinforcement in the girder. The wire mesh 

was incorporated to validate its use in place of traditional transverse reinforcement in precast girders. 

After the girders were delivered to the laboratory, temporary shoring was used to support them in 

position on the cap beam, as shown in Figure 3.8. The strands for the improved connection were then 

properly positioned through the cap beam ducts and grouted in place. The temporary shoring was also 

used to aid in the construction of the diaphragm in the connection region. 
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Figure 3.7. Inverted-tee cap beam prior to girder placement 

   

 (a) Installing as-built girders (b) Installing strand for improved girders 

   

 (c) Casting an abutment (d) Temporary abutment support 

Figure 3.8. Photographs of construction 

Strand ducts 

Inverted-tee cap 

Connection 

reinforcement 
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To provide temporary stability to the system, the concrete in the lower third of the diaphragm was 

placed without fully constraining the girder ends and prior to applying the Stage 1 hold-down forces to 

each girder simulate additional girder self-weight. Following the Stage 1 load application, the diaphragm 

concrete placement was completed, and the abutment and deck concrete was placed. After the 

hardening of the deck concrete, the Stage 2 hold-down load was applied to each span to simulate the 

additional weight of parapets and wearing surface that would be added to the prototype structure 

following deck concrete placement. 

3.6.4. Staged Loading to Simulate Prototype Gravity Effects 

The test configuration was designed to provide stress simulation of the prototype girder-to-cap 

connection region. To accomplish this simulation, the progression of the prototype connection load 

transfer capabilities during construction needed to be replicated as closely as possible. For the field 

construction of the prototype structure, the girders would be set in place without moment restraint 

prior to the diaphragm placement. The casting and subsequent curing of the diaphragm concrete in the 

girder-to-cap connection would then create a moment connection. The initial loads between the girders 

and cap beam prior to diaphragm casting are transferred as if the girders are simply-supported. 

However, after placement of the diaphragm, the loads between the girders and cap are transferred 

through a moment connection. Since the test unit did not model the full length of the girders prior to 

diaphragm placement or the parapet and wearing surface loads that would be added after deck and 

diaphragm placement, the vertical load simulations were introduced in a staged process to properly 

simulate the connection fixity during each stage of the loading process. 

The moment profile comparison of the prototype and the test unit at Stage 1 (dead loads prior to 

connection moment capacity) and Stage 2 (additional dead loads after the connection moment capacity 

is developed) in Figure 3.9 shows how the hold-down forces were used to accurately simulate the 

moments in the connection region. Similar comparisons were conducted to ensure proper simulation of 

the shear in the connection region but, for brevity, are not included here. The Stage 1 loads (33.4 kips 

per girder) were applied individually to each girder, since they were simulating additional girder self-

weight load that would be present prior to deck placement. The Stage 2 loads (45.2 kips per girder), 

however, were applied using a spreader beam across the test unit deck, since these loads were 
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simulating loads such as deck, wearing surface, and parapet that would be

placement. 

Figure 3.9. Comparison of prototype and test unit 
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simulating loads such as deck, wearing surface, and parapet that would be present after deck 

a. Stage 1 loading 

b. Stage 2 loading 

prototype and test unit moment profiles during stage loading (test unit 

scale)  

present after deck 

 

 

during stage loading (test unit 



www.manaraa.com

56 

 

 

3.6.5. Seismic Load Protocol 

The portion of the test unit load protocol planned to simulate the horizontal seismic effects was 

deemed “Phase I.” A cyclic quasi-static load process was planned to simulate the effects of horizontal 

earthquake loads, as shown in Figure 3.10. Single load cycles would be used to apply loads using the 

horizontal actuators under force control at peaks of ±0.25 Fy, ±0.5 Fy, and ±0.75 Fy, where Fy was the 

estimated first yield strength of the system. (First yielding in the column longitudinal reinforcement was 

expected to occur simultaneously at the top and bottom column ends.) The remainder of the test was 

conducted using the horizontal actuators under displacement control, using three fully reversed quasi-

static displacement cycles at system ductility levels varying from µ∆ = 1.0 to µ∆ = 10.0. 

 

Figure 3.10. Phase I load sequence 

3.7. Experimental Investigation: Phase I 

Primary purposes for Phase I included: (1) confirming the validity of the overall system for high 

seismic regions, (2) determining the capability of the girder-to-cap connections to maintain elastic 

superstructure action up to high seismic displacements (i.e., the sufficiency of the girder connections to 

provide adequate resistance to develop plastic hinges in the column), and (3) comparing and contrasting 

the existing Caltrans girder-to-cap connection detail with an improved detail. 
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3.7.1. General Summary of the Test Unit Performance 

The Phase I test was initially conducted under force-control, using the horizontal actuators to excite 

the superstructure. The test switched to horizontal displacement control after establishing the idealized 

yield displacement for the test unit based on yielding of the column longitudinal bars. General 

observation of the displacement-control portion of the testing in Phase I indicated excellent seismic 

behavior. Figure 3.11a shows the column during the Phase I testing. Plastic hinges were developed at 

both the base of the column above the footing and at the top of the column just below the cap beam, 

indicating successful performance of the superstructure. The successful superstructure performance 

was notable, since it contradicted Caltrans’ current treatment of the as-built connection as having 

limited moment resistance at high seismic displacements.  

Overall, the structure achieved a displacement ductility of 10, corresponding to 7 inches of total 

horizontal displacement in each direction. At this displacement level, several column longitudinal bars 

had buckled, and confinement failure was beginning to occur. Both the improved and as-built 

connections between the cap beam and girders behaved as fixed connections and did not show signs of 

significant damage or degradation. Fairly extensive flexural cracking was observed across the width of 

the deck, indicating that the diaphragm action of the deck had engaged all of the girders in resisting the 

column seismic moment. The seismic load distribution among the girders is investigated in depth in 

Vander Werff and Sritharan (2014). 
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Figure 3.11. Test unit photographs during and after Phase I testing 

3.7.2. Force-Displacement Response 

The force-displacement response of the test unit, shown in Figure 3.12, is indicative of excellent 

seismic performance, as strength retention was maintained all the way to ±8.0 µ∆. Also, while 

longitudinal bar buckling and beginning of confinement loss occurred at ±10.0 µ∆, significant strength 

still remained in the system. This strength exhibits the ability of the system to continue carrying gravity 

load even at very large seismic displacements. 
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Figure 3.12. Horizontal force

3.7.3. Analytical Comparison 

The analytical investigation incorporated a finite element model (FEM) analysis and an associated 

grillage analysis. Details of the FEM are provided in Theimann (2010); in summary, three

FEMs at both prototype and test unit scales were created to analyze the superstructure behavior. The 

behavior of the girder-to-cap connections and the interaction between the gird

superstructure were of particular interest in this analysis. Since the FEM work focused on the 

superstructure behavior, a grillage analysis was also conducted to investigate the generalized behavior 

of the prototype and predict the response 

2011) included a column with nonlinear elements at top and bottom to model the plastic hinge 

behavior. The elements in the grillage superstructure were modeled to incorporate findings from th

FEM work. In particular, the FEM results were used to introduce the slipping and friction force transfer 

effects in the girder-to-cap connection region to the grillage model. The grillage model was used 

primarily to predict the force-displacement respons

distribute between the girders in the superstructure. The grillage results are shown along with the 

experimental results later in this paper.
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. Horizontal force-displacement response for system test unit

The analytical investigation incorporated a finite element model (FEM) analysis and an associated 

ls of the FEM are provided in Theimann (2010); in summary, three

FEMs at both prototype and test unit scales were created to analyze the superstructure behavior. The 

cap connections and the interaction between the gird

superstructure were of particular interest in this analysis. Since the FEM work focused on the 

superstructure behavior, a grillage analysis was also conducted to investigate the generalized behavior 

of the prototype and predict the response of the test unit. The grillage model (detailed in Snyder et al., 

2011) included a column with nonlinear elements at top and bottom to model the plastic hinge 

behavior. The elements in the grillage superstructure were modeled to incorporate findings from th

FEM work. In particular, the FEM results were used to introduce the slipping and friction force transfer 

cap connection region to the grillage model. The grillage model was used 

displacement response of the test unit and to investigate the load 

distribute between the girders in the superstructure. The grillage results are shown along with the 

experimental results later in this paper. 

 

displacement response for system test unit 

The analytical investigation incorporated a finite element model (FEM) analysis and an associated 

ls of the FEM are provided in Theimann (2010); in summary, three-dimensional 

FEMs at both prototype and test unit scales were created to analyze the superstructure behavior. The 

cap connections and the interaction between the girders across the 

superstructure were of particular interest in this analysis. Since the FEM work focused on the 

superstructure behavior, a grillage analysis was also conducted to investigate the generalized behavior 

of the test unit. The grillage model (detailed in Snyder et al., 

2011) included a column with nonlinear elements at top and bottom to model the plastic hinge 

behavior. The elements in the grillage superstructure were modeled to incorporate findings from the 

FEM work. In particular, the FEM results were used to introduce the slipping and friction force transfer 

cap connection region to the grillage model. The grillage model was used 

e of the test unit and to investigate the load 

distribute between the girders in the superstructure. The grillage results are shown along with the 
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The force-displacement predictions from the grillage model, also shown in Figure 3.12, compared 

favorably to the experimental horizontal force-displacement response of the superstructure, which is 

shown in There is slight variation at the small displacements, which is attributed to the use of a cracked 

effective stiffness for both the column and superstructure sections in the grillage model, rather than the 

actual gross values for the elastic region of the test. However, the results converged more closely at 

higher levels of displacement as more of the test unit began to soften due to the development of cracks 

and yielding of longitudinal reinforcement. 

3.7.4. Connection Response 

Investigation of the behavior of the girder-to-cap beam connections was a primary area of interest, 

verifying in particular whether the superstructure remained elastic while allowing the column plastic 

hinges to fully develop. Visual observations during Phase I indicated that the superstructure did indeed 

remain elastic, as plastic hinges were developed in the column and no significant spalling, bar buckling, 

or other failure indicators were observed in the superstructure. Data gathered during Phase I testing 

was used to validate these observations. Figure 3.13 shows dowel bar strains measured in the as-built 

and improved connections for the center girder at peak displacements producing negative moment in 

the connection region. The maximum measured strain in the as-built connection was approximately 900 

µε, and the maximum measured strain in the improved connection was approximately 1000 µε. Both of 

these values are well below the yield strain (approximately 2000 µε) of the dowel bars. Also, the dowel 

bar strain magnitudes from peak displacements producing positive moment in the connections (not 

shown in the figure) were observed to be roughly half the magnitude of the strains under negative 

moment loading. The relatively low strain magnitude observed in all the dowel bars indicates that the 

dowel bar behavior remained elastic throughout the Phase I test for both the as-built and improved 

connection details. 
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 a. As-built connection (positive peaks)

 

 c. As-built connection (negative peaks)

Figure 3.13

The improved connection implemented unstressed strands 

were not included in the as-built detail. 

presented above is that the dowel bar strains in the improved connection are not decidedly lower than 

the dowel bar strains in the as-built connection, as might be expected if some of the positive moment 

tension load is diverted from the dowel bars

connections of one exterior and two intermediate girders are shown in 

to have been slightly engaged already at low displacements, but all exhibited a noticeable increase in 

engagement when the superstructure was displaced to 

corresponds closely to the point in the test where no

improved connection was first observed.

tensile capacity was fully lost, producing

profiles from the improved connection (
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uilt connection (positive peaks) b. Improved connection (positive peaks)

 

(negative peaks) d. Improved connection (negative peaks)

13. Dowel bar strains at peak displacements 

he improved connection implemented unstressed strands for positive moment continuity that 

built detail. An interesting observation related to the dowel b

presented above is that the dowel bar strains in the improved connection are not decidedly lower than 

built connection, as might be expected if some of the positive moment 

tension load is diverted from the dowel bars to the strands. Strain data from the strands in the improved 

connections of one exterior and two intermediate girders are shown in Figure 3.14. All the strands seem 

o have been slightly engaged already at low displacements, but all exhibited a noticeable increase in 

ucture was displaced to 1.5 µ∆ (1.0 in.). This sudden magnitude increase

corresponds closely to the point in the test where noticeable opening of the girder-cap interface 

improved connection was first observed. The opening at this point was an indication

producing significant load transfer to the strands. The dowel bar str

profiles from the improved connection (Figure 3.13b,d) above also show the largest incremental 

 

b. Improved connection (positive peaks) 

 

(negative peaks) 

for positive moment continuity that 

interesting observation related to the dowel bar data 

presented above is that the dowel bar strains in the improved connection are not decidedly lower than 

built connection, as might be expected if some of the positive moment 

Strain data from the strands in the improved 

. All the strands seem 

o have been slightly engaged already at low displacements, but all exhibited a noticeable increase in 

sudden magnitude increase 

cap interface of the 

at this point was an indication that the concrete 

The dowel bar strain 

b,d) above also show the largest incremental 
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increase between displacements steps 1.0 µ∆ and 1.5 µ∆. This behavior indicates that the dowel bars and 

unstressed strand act in concert to transfer the positive moment tension load, rather than the 

unstressed strand diverting a considerable portion of the action away from the dowel bars. The 

combination of the dowel bars and unstressed strand provides a viable mechanism for resisting large 

positive moment action. 

 

Figure 3.14. Unstressed strand strains in exterior and intermediate girders at peak displacements 

producing positive moment in the improved connection region 

The relative behavior of the gap between the girder bottom flange and the adjoining edge of the 

diaphragm provides further insight into the difference between the improved and as-built connection 

behaviors. Figure 3.15 compares the dowel strains plotted as a function of this gap data for both the 

improved and as-built connections at positive-moment-direction peak load conditions. Comparing both 

sets of data along the vertical axis confirms the similarity in dowel bar strain magnitude for the 

improved and as-built connections. However, the comparison along the horizontal axis reveals 

noticeably larger displacements in the as-built connection, showing that the unstressed strand in the 
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improved connection was effective in reducing the gap opening under positive moment loading. Similar 

to the data above, this data shows that while the unstressed strand did not decrease the dowel bar 

strain, it certainly improved the performance of the connection.

Figure 3.15. Gap opening at the bottom girder

Strains measured in the deck reinforcement, which acted as the primary tension reinforcement for 

the connections under negative moment loading, were also used to investigate the superstructure 

behavior. A primary finding was that the de

in resisting the column moment, from the early load stages all the way through to the overstrength 

moment. More details on this topic can be found in Vander Werff and Sritharan (2014).

3.8.

Since the superstructure, including the connection, maintained elastic response in the Phase I test, a

subsequent experimental test phase 

to fully exercise the girder-to-cap connections and further quantify their behavior. The configuration of 

the Phase II test was similar to the Phase I configuration shown earlier in

girder tie-downs were removed and the vertical actuators were moved to the tie

photograph of the Phase II test configuration 
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improved connection was effective in reducing the gap opening under positive moment loading. Similar 

data shows that while the unstressed strand did not decrease the dowel bar 

strain, it certainly improved the performance of the connection. 

. Gap opening at the bottom girder-to-diaphragm interface (Phase I)

Strains measured in the deck reinforcement, which acted as the primary tension reinforcement for 

the connections under negative moment loading, were also used to investigate the superstructure 

behavior. A primary finding was that the deck strains clearly exhibited the engagement of all five girders 

in resisting the column moment, from the early load stages all the way through to the overstrength 

moment. More details on this topic can be found in Vander Werff and Sritharan (2014).

3.8. Experimental Investigation: Phase II 

Since the superstructure, including the connection, maintained elastic response in the Phase I test, a

st phase was conducted. The purpose of this phase, deemed “Phase II,” was 

cap connections and further quantify their behavior. The configuration of 

the Phase II test was similar to the Phase I configuration shown earlier in Figure 3.

downs were removed and the vertical actuators were moved to the tie-down locations. 

photograph of the Phase II test configuration was provided in Figure 3.5b. 

improved connection was effective in reducing the gap opening under positive moment loading. Similar 

data shows that while the unstressed strand did not decrease the dowel bar 

 

(Phase I) 

Strains measured in the deck reinforcement, which acted as the primary tension reinforcement for 

the connections under negative moment loading, were also used to investigate the superstructure 

ck strains clearly exhibited the engagement of all five girders 

in resisting the column moment, from the early load stages all the way through to the overstrength 

moment. More details on this topic can be found in Vander Werff and Sritharan (2014). 

Since the superstructure, including the connection, maintained elastic response in the Phase I test, a 

The purpose of this phase, deemed “Phase II,” was 

cap connections and further quantify their behavior. The configuration of 

5, except that the 

down locations. A 
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3.8.1. Load Protocol 

For Phase II, the relocated vertical actuators were used as the primary control mechanism, while the 

horizontal actuators were configured to remain at zero

without affecting the load condition. 

actuators. The actuators were initially adjusted under load control to establish the initial condition, 

matching the endpoint of the Phase I test

in Figure 3.16. Displacement control was then used to apply small incremental vertical displacements at 

the actuator locations down to 1.5 in. below the initial girder positions (producing negative moment i

the connection regions) and then up to 1.0 in. above the initial girder positions (producing positive 

moment in the connection regions). The vertical displacements were applied to both sides of the test 

unit simultaneously. The initial displacement contr

ensure specimen performance without going beyond load levels produced during Phase I.

initial sequence, the primary displacement sequence utilized three cycles per displacement level, as 

shown in Figure 3.16, up to a maximum displacement of 6.0 in. downward and 3.0 upward on each side 

of the test unit. 

Figure 
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For Phase II, the relocated vertical actuators were used as the primary control mechanism, while the 

horizontal actuators were configured to remain at zero-load to retain horizontal stability in the test unit 

without affecting the load condition. Figure 3.16 provides the load protocol used with the vertical 

actuators. The actuators were initially adjusted under load control to establish the initial condition, 

the endpoint of the Phase I test and corresponding with the left edge of the sequence shown 

. Displacement control was then used to apply small incremental vertical displacements at 

the actuator locations down to 1.5 in. below the initial girder positions (producing negative moment i

the connection regions) and then up to 1.0 in. above the initial girder positions (producing positive 

moment in the connection regions). The vertical displacements were applied to both sides of the test 

he initial displacement control sequence was used to establish test procedure and 

ensure specimen performance without going beyond load levels produced during Phase I.

the primary displacement sequence utilized three cycles per displacement level, as 

, up to a maximum displacement of 6.0 in. downward and 3.0 upward on each side 

Figure 3.16. Test unit Phase II load sequence 

For Phase II, the relocated vertical actuators were used as the primary control mechanism, while the 

load to retain horizontal stability in the test unit 

provides the load protocol used with the vertical 

actuators. The actuators were initially adjusted under load control to establish the initial condition, 

and corresponding with the left edge of the sequence shown 

. Displacement control was then used to apply small incremental vertical displacements at 

the actuator locations down to 1.5 in. below the initial girder positions (producing negative moment in 

the connection regions) and then up to 1.0 in. above the initial girder positions (producing positive 

moment in the connection regions). The vertical displacements were applied to both sides of the test 

was used to establish test procedure and 

ensure specimen performance without going beyond load levels produced during Phase I. Following the 

the primary displacement sequence utilized three cycles per displacement level, as 

, up to a maximum displacement of 6.0 in. downward and 3.0 upward on each side 
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3.8.2. General Observations 

The primary observation during the Phase II portion of the experimental test was the contrast in 

performance between the as-built connections and the improved connections. Throughout the test, the 

improved connections exhibited virtually no signs of damage, whereas the as-built connections in all five 

girders experienced a significant amount of deterioration in the interface regions between the girders 

and the diaphragm. 

At a displacement of +0.5 in., the as-built connection was already subjected to a moment 

approximately 27% greater than the maximum positive moment achieved during the Phase I test. At a 

displacement of +0.75 in., the improved connection side remained essentially unchanged, but the as-

built side began to exhibit significant degradation. The gap between the girder bottom flanges and the 

cap beam widened to approximately 0.2 in., and the 1-in. thick grout along the bottom interface 

between the girders and cap had begun to separate and fall off, as shown in Figure 3.17a. Cracks in the 

diaphragm concrete indicative of the girder bottom dowel bar trying to pull out were observed on the 

as-built connection side. At +1.0-in. displacement, the as-built connection continued to exhibit interface 

grout spalling, significant crack opening and bottom flange girder pullout, and a significant crack 

between the underside of the deck and the top of the diaphragm that indicated a connection 

separation. The improved connection remained essentially unchanged. 

The higher displacement cycles continued to show the trend of increased deterioration on the as-

built side with little change on the improved side. Eventually, the as-built connection deteriorated to the 

point of behaving as essentially a pin connection under positive-moment loading. Figure 3.17(b,c) shows 

the deterioration of the as-built connections at large positive displacements. The pin behavior of the as-

built connection and the plastic hinge formed at the top of the column during Phase I prevented any 

further testing to increase the positive moment in the improved connection to the point of ultimate 

failure. Based on the force-displacement plots for the structure at a downward displacement of 6.0 in., 

both connection details seemed to have additional negative moment capacity. However, when the 

structure was cycled to an upward displacement of 3.0 in., a 42% drop in strength was observed, 

indicating that the as-built connection had already reached its ultimate capacity. Visual observations, 

including significant damage and pullout of the girders, seemed to confirm this data indication, so the 
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behavior of the as-built connection was deemed to have been adequately captured, and the test was 

terminated. 

 

a. Partially spalled grout pad at as-built girder-to-cap interface at +0.75-in. displacement 

  

 b. Deterioration of as-built connection c. Opening of as-built connection under 

  large positive-moment displacement 

Figure 3.17. As-built connection region during the latter stages of Phase II testing 
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3.8.3. Force-Displacement Response 

The configuration of the Phase II test made it challenging to isolate the behavior of the improved 

and as-built sides of the test unit, as initial observation of the test raw data seemed to indicate inelastic 

behavior of both the improved and as-built connections. However, a careful analysis of the data was 

subsequently conducted, taking into account the experimental rotations, column load, horizontal 

actuator load, and vertical loads from both sides. This analysis was used to determine the total moment 

on the two sides, independent of each other. This modified data, shown in Figure 3.18, provides a much 

clearer picture of the test unit behavior and reveals distinctly different performance for the improved 

and as-built connections, particularly under positive moment excitation. 

In Figure 3.18a, the behavior of the as-built and improved connections when subjected to positive 

moment is seen to be decidedly different. While the as-built connection showed significant strength 

deterioration at displacements higher than 0.75-in., the improved connection was not subjected to 

relative displacements (adjusted to account for girder rotation) higher than approximately 0.35 in., and 

the response was essentially linear and elastic. Both connections demonstrated reserve positive 

moment strength well beyond the maximum demand experienced under horizontal seismic loading, 

shown by the dashed line on the figure. However, the as-built connection clearly experienced a loss in 

stiffness at loading above the maximum horizontal demand whereas the improved connection 

performance remained elastic.  

Figure 3.18b provides a comparison of the negative moment behavior of the two connections. The 

improved connection exhibited a slight increase in performance over the as-built connection. The 

relative displacement difference between the improved and as-built connections at the large 

displacements is likely due to the loss of the grout pad in the as-built connection. The difference in 

negative moment performance between the improved and as-built connections is seen to be much less 

pronounced than for the positive moment behavior. This similarity is not surprising, since the deck 

reinforcement provides the primary tension transfer mechanism for the two connections, and both 

connections utilized the same deck reinforcement detail. Both connections exhibited excellent negative 

moment performance, resisting moments that were 2.5 to 3.0 times higher than the maximum demand 

realized under horizontal seismic loading. 
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 a. Positive moment in girder-to-cap connection

Figure 3.18. Comparison 

3.8.4. Behavior of Connection Details

The similarity of the dowel bar behavior in the improved and as

noted above. However, the gap relative displacement data from Phase I ind

the improved connection. Figure 

improved connection’s superior performance is even more pronounced for this phase. The gap relative 

displacement is considerably larger for the as

strain are seen to be lower in the improved connection

unstressed strand, even more apparent here for the large loads and displacements during Phase II than 

previously during Phase I. 

Figure 3.20 shows the strains measured on these dowel bars at the peak displacements for the 

duration of the Phase II test. The behavior under 

was very similar for both the as-built and improved connections. For 

connection moment, a notable difference was measured between the as

The as-built connection exhibited quickl

higher, whereas the improved connection strain plateaued at that displacement level. The engagement 

of the unstressed strands in the improved connection prevented the dowel bar load to increase 

improved connection at high displacements, whereas the dowel bar in the as

to experience increase in load until it yielded at a girder dis

indicate that the dowel bars are engaged in t

strand provides significant positive
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cap connection b. Negative moment in girder-to

. Comparison of as-built and improved connection moment behavior

Behavior of Connection Details 

similarity of the dowel bar behavior in the improved and as-built connection during

However, the gap relative displacement data from Phase I indicated improved behavior for 

Figure 3.19 shows the same data from Phase II, and it reveals that the 

improved connection’s superior performance is even more pronounced for this phase. The gap relative 

displacement is considerably larger for the as-built connection. In addition, the magnitudes of 

strain are seen to be lower in the improved connection. Both these observations show the benefit of the 

unstressed strand, even more apparent here for the large loads and displacements during Phase II than 

shows the strains measured on these dowel bars at the peak displacements for the 

duration of the Phase II test. The behavior under displacements producing negative con

built and improved connections. For displacements producing positive 

connection moment, a notable difference was measured between the as-built and improved dowel bars. 

built connection exhibited quickly increasing strains at positive displacements of 1.0 in. and 

higher, whereas the improved connection strain plateaued at that displacement level. The engagement 

of the unstressed strands in the improved connection prevented the dowel bar load to increase 

improved connection at high displacements, whereas the dowel bar in the as-built connection continued 

to experience increase in load until it yielded at a girder displacement of 1.5 to 2.0 in. These

indicate that the dowel bars are engaged in the improved connection, even though the addition of the 

strand provides significant positive-moment tension continuity. Although the unstressed strand 

 

to-cap connection 

built and improved connection moment behavior 

built connection during Phase I was 

icated improved behavior for 

shows the same data from Phase II, and it reveals that the 

improved connection’s superior performance is even more pronounced for this phase. The gap relative 

built connection. In addition, the magnitudes of dowel bar 

. Both these observations show the benefit of the 

unstressed strand, even more apparent here for the large loads and displacements during Phase II than 

shows the strains measured on these dowel bars at the peak displacements for the 

ing negative connection moment 

producing positive 

built and improved dowel bars. 

y increasing strains at positive displacements of 1.0 in. and 

higher, whereas the improved connection strain plateaued at that displacement level. The engagement 

of the unstressed strands in the improved connection prevented the dowel bar load to increase in the 

built connection continued 

placement of 1.5 to 2.0 in. These data 

he improved connection, even though the addition of the 

Although the unstressed strand 
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considerably improves the connection performance, the combined mechanism of the dowel bars and 

the unstressed strand provide the positive moment tension resistance.

Figure 3.19. Gap opening at the bottom girder

Figure 3.20. Dowel bar strains in center girder mid
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considerably improves the connection performance, the combined mechanism of the dowel bars and 

ssed strand provide the positive moment tension resistance. 

. Gap opening at the bottom girder-to-diaphragm interface (Phase II)

. Dowel bar strains in center girder mid-level bars at peak displacements

considerably improves the connection performance, the combined mechanism of the dowel bars and 

 

diaphragm interface (Phase II) 

 

level bars at peak displacements 
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Strains on the unstressed strands in the improved girder-to-cap connections were also used to 

investigate the connection behavior. Figure 3.21 shows measured strains at peak positive displacements 

(producing positive connection moment) on the strands at the interface between the cap beam and the 

intermediate and exterior girders (no data were available for the center girder). The yield strain for the 

strand, based on a yield stress of 230 ksi, was 7930 µε, so the total strain values for the entirety of the 

test remained well below this level. The strains exhibit a trend of gradual increase during the initial 

portion of the Phase II test and then are seen to plateau for girder displacements ranging from 0.75 in. 

to 1.5 in. However, for the large vertical displacements, the trends diverge, with one intermediate girder 

showing an increase in strain, while the other intermediate girder and the exterior girder show a 

decrease in strain. This divergent behavior occurs during the same portion of the test for which the 

dowel bars on the improved connection side showed consistent behavior. One hypothesis for this 

observation is that the significant deterioration occurring on the as-built side of the test unit during the 

high displacement portion of the Phase II test produced inconsistent load paths through the 

superstructure, and consequently resulted in uneven load transfer in the girders. Overall, the strands 

were certainly effective in working with the dowel bars to provide a positive moment tension 

mechanism, but further testing to investigate the strand behavior at large displacements would be 

helpful in fully quantifying the improved connection detail. 

 

Figure 3.21. Unstressed strand strains at interface of cap beam to intermediate and exterior girders at 

peak positive displacements 
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3.9. Conclusions 

Details that facilitate the use of ABC methods in high seismic regions are increasingly desirable. In 

particular, the inverted-tee cap beam offers an excellent possibility for using precast concrete 

components in bridge superstructures susceptible to high seismic loads, provided that the girder-to-cap 

connection region is properly addressed. The work in this study has shown that connections that are 

sufficient for high seismic load are feasible and can be used in concert with precast girders to provide an 

excellent ABC alternative. 

Based on this research study, the following specific conclusions can be drawn: 

1. The improved connection detail, which incorporated unstressed strands for positive moment 

continuity, provided excellent performance during Phase I loading simulating gravity and full 

horizontal seismic conditions. The improved connection remained elastic throughout Phase I 

testing and exhibited noticeably lower relative displacement at the girder-to-cap beam interface 

than an as-built connection detail that did not include the unstressed strands. 

2. The superior performance of the improved connection was even more apparent during Phase II 

loading which produced maximum connection shear and moment conditions in the connection 

region that were approximately double the expected maximum demand from the gravity and 

full horizontal seismic condition. The improved connection remained elastic and produced 

maximum relative interface displacement that was only 6% of the corresponding displacement 

in the as-built connection detail. 

3. The column overstrength moment was distributed to all the girders in the superstructure, 

including the exterior girders. This load distribution already occurred in the girder-to-cap 

connection region immediately adjacent to the cap. 

4. Although it did not perform as well as the improved connection, the as-built connection was 

successful in behaving as a fully continuous connection during the Phase I loading simulating 

gravity and full horizontal seismic conditions. It maintained elastic behavior for the duration of 

the Phase I test, although its relative displacements at the girder-to-cap interface were larger 

than for the improved connection. 

5. The as-built connection deteriorated considerably when subjected to the Phase II load sequence 

that exercised the connection beyond the gravity and full horizontal seismic condition. While the 
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as-built connection produced a positive moment resistance that was over 50% higher than the 

expected gravity and full seismic condition, it did not maintain this resistance at large vertical 

girder displacements. 

6. The cap beam-diaphragm-girder connection in existing bridges that contain the as-built 

connection detail can be expected to act as an integral connection, rather than degrading to a 

pin connection during seismic loading as per current recommendations. Retrofits of such bridges 

should ensure that the top of the column can develop a plastic hinge and contain adequate 

confinement reinforcement, along with ensuring that the column shear resistance is sufficient in 

light of the plastic hinge formation at the column top. 

7. The combination of the inverted-tee girder and I-girder connection was demonstrated to be a 

viable ABC system. Constructability of the detail was straightforward, and adequate seismic 

performance was demonstrated. Both the as-built and improved connection details successfully 

transferred shear forces and did not allow vertical unseating or collapse of the superstructure, 

even when subjected to very high superstructure vertical forces and displacements. 

8. The unstressed strand in the improved connection considerably reduced the girder-to-cap beam 

gap opening and maintained elastic behavior of the connection. However, it did not drastically 

reduce the dowel bar strains, except for at very high displacements. The results demonstrate 

that the unstressed strand and dowel bars work together to form a viable positive moment 

tension load transfer mechanism. 

9. Wire mesh reinforcement was demonstrated to be an acceptable detail in precast girders in lieu 

of standard reinforcing bars. 
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CHAPTER 4. PRECAST CONNECTIONS DESIGNED FOR ABC IN SEISMIC REGIONS 

A paper to be submitted to the ASCE Journal of Structural Engineering 
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3
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4.1. Abstract 

The behavior of critical connections between prefabricated elements in bridges utilizing accelerated 

construction methods (ABC) continues to be of utmost interest. Some of these connections will 

experience excessively high demand in regions that are susceptible to high seismic load. This paper 

presents a large-scale experimental study that investigated seismic performance of the connection 

between precast concrete I-shaped girders and a concrete inverted-tee cap beam using two different 

details. The ability of the girder-to-cap connection to successfully resist positive-moment and the 

corresponding shear under combined gravity and seismic effects was of particular interest. The 

possibility of connection failure due to increased demand resulting from vertical seismic acceleration 

was also investigated. 

This study utilized a half-scale test unit and replicated a portion of a typical inverted-tee cap beam, 

along with two 10.7 m (35 ft) long girders with unique connection details and split bridge decks so each 

detail could be tested individually. Both connection details were improvements to an existing detail for 

precast dapped-end girders and inverted-tee cap beams that has been used by the California 

Department of Transportation (Caltrans). Both connections relied on deck reinforcement as the primary 

tension-transfer mechanism for negative moment. For positive moment tension transfer, one 

connection utilized unstressed grouted strands to provide continuity between the girder bottom flange 

and the cap beam. The other connection implemented a group of large-diameter transverse dowel bars 

located in the lower portion of the girder that were placed inside looped strands cast in the cap beam 
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and subsequently encased in a cast-in-place diaphragm. Both connections exhibited excellent seismic 

performance, remaining elastic up to load levels well in excess of what would be required to develop a 

column plastic hinge with due consideration to vertical acceleration effects. Both connections were 

subjected to large girder displacements in order to fully quantify their performance. The resistance 

provided by both connections in both the negative and positive moment directions was two to three 

times larger than maximum expected horizontal seismic demand, showing that each connection could 

successfully resist significant vertical acceleration in addition to maximum expected horizontal effects. 

4.2. Introduction 

Many regions in the United States are experiencing increased transportation demand along with 

aging transportation infrastructure. Consequently, innovative methods to improve and expedite 

construction of this infrastructure are in high demand. A primary approach that states across the 

country are implementing to keep up with continually increasing transportation infrastructure needs is 

accelerated bridge construction (ABC). ABC methods seek to incorporate prefabricated elements as 

much as possible to decrease field construction time. Such methods have been widely employed in the 

U.S. in states like Texas, Florida, and Utah for more than a decade [see Federal Highway Administration 

(FWA), 2004; National Cooperative Highway Research Program (NCHRP), 2011; Stanton et al., 2006; and 

Matta et al., 2005 for example]. 

The primary benefit to incorporating ABC techniques is the reduction of field construction time. 

Reduced construction time leads directly to other benefits including the mitigation of long traffic delays 

and total public cost associated with long-term detours. Also, secondary benefits include elimination of 

the use of concrete falsework and an overall improvement in quality control, due to increased use of 

precast concrete members rather than cast-in-place concrete sections. 

Despite the advantages of ABC, such methods have been difficult to implement in moderate-to-high 

seismic regions because of the poor seismic performance of the connections established between 

precast components. Recent information indicates that over 70 percent of the material currently in use 

in bridges in the state of California is cast-in-place concrete (Hida, 2012). Structural failures in relatively 

recent events in California such as the Loma Prieta earthquake in 1989 (Housner and Thiel, 1990) and 
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the Northridge earthquake in 1994 (SEAOC, 2010) confirmed the vulnerability of connections in precast 

concrete construction. 

The California Department of Transportation (Caltrans) 

precast connections that are suitable for earthquake loads and thus pa

implementation of ABC methods in seismic regions [see for example Caltrans’ “ABC Strategic plan” 

(2008a) and the related “Lessons Learned” report (2008b)]. An existing detail that has been used by 

Caltrans for precast girder connec

incorporates a concrete inverted-tee cap beam and precast dapped

shows a schematic of this concept. 

configuration that allows quick installation of the girders. A cast

region can provide connection continuity at th

Figure 4.1. Prototype bridge utilizing the inverted tee system

However, the existing detail (referred to as the “as

prevented it from being widely used in California and other seismic regions. First, while a cast

bridge deck and reinforcement running over the girder

continuity for negative moment, the connection 

reverse direction. Thus, when subjected to positive moment during 

connection is not well suited for large moment 

the possibility of a plastic hinge in the column just below the cap beam

cost competitive. The development of a girder
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94 (SEAOC, 2010) confirmed the vulnerability of connections in precast 

The California Department of Transportation (Caltrans) has embarked on an effort

precast connections that are suitable for earthquake loads and thus pave the way for increased 

implementation of ABC methods in seismic regions [see for example Caltrans’ “ABC Strategic plan” 

(2008a) and the related “Lessons Learned” report (2008b)]. An existing detail that has been used by 

Caltrans for precast girder connections that offers promise for providing sufficient seismic resistance 

tee cap beam and precast dapped-end I-shaped girders. 

shows a schematic of this concept. Attaching the girder dapped end to the inverted-tee ledge provides a 

configuration that allows quick installation of the girders. A cast-in-place diaphragm in the connection 

region can provide connection continuity at the girder-to-cap interface. 

. Prototype bridge utilizing the inverted tee system 

However, the existing detail (referred to as the “as-built” detail) has two main drawbacks that have 

om being widely used in California and other seismic regions. First, while a cast

bridge deck and reinforcement running over the girder-to-cap connection can provide reliable tension 

continuity for negative moment, the connection does not provide positive moment 

when subjected to positive moment during an earthquake

connection is not well suited for large moment resistance. Consequently, the use of this detail reduces 

c hinge in the column just below the cap beam, making the bridge design less 

The development of a girder-to-cap connection detail with moment continuity will 

94 (SEAOC, 2010) confirmed the vulnerability of connections in precast 

has embarked on an effort to develop 

ve the way for increased 

implementation of ABC methods in seismic regions [see for example Caltrans’ “ABC Strategic plan” 

(2008a) and the related “Lessons Learned” report (2008b)]. An existing detail that has been used by 

tions that offers promise for providing sufficient seismic resistance 

shaped girders. Figure 4.1 

tee ledge provides a 

place diaphragm in the connection 

 

drawbacks that have 

om being widely used in California and other seismic regions. First, while a cast-in-place 

cap connection can provide reliable tension 

positive moment continuity in the 

an earthquake event, the 

. Consequently, the use of this detail reduces 

, making the bridge design less 

cap connection detail with moment continuity will 
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greatly increase the usefulness of the inverted-tee concept in seismic regions and provide an excellent 

opportunity to utilize ABC techniques. 

A second limitation of the connection is related to vertical acceleration effects. The current Caltrans 

Seismic Design Criteria (SDC) stipulates, in Section 2.1.3, “For Ordinary Standard bridges where the site 

peak ground acceleration is 0.6g or greater, an equivalent static vertical load shall be applied to the 

superstructure to estimate the effects of vertical acceleration” (Caltrans, 2013). The SDC in Section 7.2.2 

requires that this vertical load is to be 25% of the dead load, applied upward and downward. In addition, 

SDC Section 7.2.2 also stipulates that, if vertical acceleration must be considered, longitudinal side mild 

reinforcement in the girders must be capable by means of shear friction of resisting 125% of the dead 

load shear at the interface with the cap beam. This requirement exists to protect against potential shear 

failures should the bottom of the girder attempt to open in a seismic event; however, it has been 

disadvantageous with respect to the inverted-tee and precast girder system because of the need to 

include mild reinforcement running continuously between the girder and the cap beam.  Thus, the 

research detailed in this paper intends to illustrate that extending unstressed strands from the girder to 

the bent cap provides sufficient shear resistance in the connection with adequate capacity to resist 

vertical acceleration effects. Such work will verify that the inverted-tee and precast girder system is a 

robust and economically advantageous option for implementing accelerated construction. 

To further investigate the use of the inverted tee system in seismic regions, a joint study was 

completed in 2010 (see Snyder et al., 2011, and Chapter 3 of this dissertation) which sought to quantify 

the seismic performance of the as-built connection detail. The 2010 study established an improved 

connection better equipped to handle seismic demands efficiently and also verified the validity of the 

system for seismic regions. The work from the 2010 study showed the benefit in continuing to 

investigate and develop precast girder-to-cap beam connections for ABC methods, leading to the study 

detailed in this paper. Broadly, this study is intended to promote the use of ABC by developing 

connections that enable cost-effective ABC methods in seismic regions. To accomplish this broad goal, 

the work has been focused on conceptualizing two girder-to-cap beam connections for precast members 

and experimentally verifying them for gravity and horizontal seismic loading while also considering 

potential impact from vertical acceleration. 
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4.3.

The system test conducted by Snyder et al. (2011) 

utilized a 50%-scale test unit to simulate the region around the center bent of the prototype bridge 

shown in Figure 4.1. The test unit, shown in 

long on each side of the inverted tee cap beam, along with a single

of the center span of the prototype between 

cap beam region of the test unit, shown in cross

as-built connection detail along with an improved connection detail. The as

incorporated three dowel bars that were encased in the cast

girder placement. However, for the improved connection detail, unstressed 

run through ducts in the bottom flange of the girder and the bottom of the cap beam. These strands 

provided tension continuity for positive moment in the girder

the negative moment tension continuity provided by the deck reinforcement.

 

 a. Test configuration

In Phase I of the system test, the test unit superstructure was subjected to cyclic horizontal loads 

and displacements in the longitudinal direction to simulate horizontal seismic action. 

the test, based on analytical predictions including finite element and grillage analyses, included: (1) good 

overall system seismic performance, (2) similar negative moment capacity for both the as

improved connections, (3) positive moment capaci

connection that would be sufficient to develop the column overstrength moment, and (4) increased 

positive moment capacity for the improved connection. 

envelopes from this phase of testing
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4.3. Brief summary of the system test   

The system test conducted by Snyder et al. (2011) and detailed in Chapter 3 of this

scale test unit to simulate the region around the center bent of the prototype bridge 

. The test unit, shown in Figure 4.2, incorporated five girders approximately 28 ft 

long on each side of the inverted tee cap beam, along with a single-column bent, to model 

of the prototype between the approximate horizontal seismic inflection points. The 

, shown in cross-section in Figure 4.2b, was designed to incorporate the 

built connection detail along with an improved connection detail. The as

incorporated three dowel bars that were encased in the cast-in-place concrete diaphragm following 

girder placement. However, for the improved connection detail, unstressed prestressing 

run through ducts in the bottom flange of the girder and the bottom of the cap beam. These strands 

uity for positive moment in the girder-to-cap connection, thus supplementing 

the negative moment tension continuity provided by the deck reinforcement. 

 

a. Test configuration b. Girder-to-cap connection detail

Figure 4.2. System test unit 

In Phase I of the system test, the test unit superstructure was subjected to cyclic horizontal loads 

and displacements in the longitudinal direction to simulate horizontal seismic action. 

the test, based on analytical predictions including finite element and grillage analyses, included: (1) good 

overall system seismic performance, (2) similar negative moment capacity for both the as

improved connections, (3) positive moment capacity and vertical shear capacity for the as

connection that would be sufficient to develop the column overstrength moment, and (4) increased 

positive moment capacity for the improved connection. The horizontal force-displacement response 

this phase of testing, for both the push and pull directions, is provided in 

and detailed in Chapter 3 of this dissertation 

scale test unit to simulate the region around the center bent of the prototype bridge 

, incorporated five girders approximately 28 ft 

column bent, to model the portions 

horizontal seismic inflection points. The 

was designed to incorporate the 

built connection detail along with an improved connection detail. The as-built connection 

lace concrete diaphragm following 

prestressing strands were 

run through ducts in the bottom flange of the girder and the bottom of the cap beam. These strands 

cap connection, thus supplementing 

 

cap connection detail 

In Phase I of the system test, the test unit superstructure was subjected to cyclic horizontal loads 

and displacements in the longitudinal direction to simulate horizontal seismic action. Expectations from 

the test, based on analytical predictions including finite element and grillage analyses, included: (1) good 

overall system seismic performance, (2) similar negative moment capacity for both the as-built and 

ty and vertical shear capacity for the as-built 

connection that would be sufficient to develop the column overstrength moment, and (4) increased 

displacement response 

is provided in Figure 4.3. As 
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the figure shows, the system maintained strength up to high ductility lev

successfully formed in both the top and bottom of the column. 

details employed on the two sides of the cap beam meant that connection flexural stiffnesses would 

vary for the push and pull directions, the figure shows that both connections produced very similar 

system performance for this phase of testing. 

system for high seismic regions.  

Figure 4.3. Horizontal force

Phase II of the system test was designed to fully exercise the as

details. In this phase of testing, the horizontal actu

actuators were moved to the hold

used to subject the superstructure to large vertical forces and displacements, also subjecting the gir

to-cap connections to large shear and moment demands. 

for both the improved and as-built details in both the positive a

negative moment direction, the performance of both the as

with slightly more strength exhibited by the improved connection. This similarity was not surprising, 

since the deck reinforcement provided the tension transfer mechanism for both connections. In the 

positive moment direction, however, the as

improved connection. In fact, deterioration of the as
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the figure shows, the system maintained strength up to high ductility levels. Plastic hinges were 

successfully formed in both the top and bottom of the column. Also, although the different connection 

details employed on the two sides of the cap beam meant that connection flexural stiffnesses would 

ections, the figure shows that both connections produced very similar 

system performance for this phase of testing. Overall, the test clearly demonstrated the suitability of the 

Horizontal force-displacement response envelope from system test Phase I

Phase II of the system test was designed to fully exercise the as-built and improved connection 

details. In this phase of testing, the horizontal actuators were used only to provide stability. The vertical 

actuators were moved to the hold-down locations 4.9 m (16 ft) from the column centerline and were 

used to subject the superstructure to large vertical forces and displacements, also subjecting the gir

cap connections to large shear and moment demands. Figure 4.4 provides the peak moment values 

built details in both the positive and negative moment directions. In the 

negative moment direction, the performance of both the as-built and improved connections was similar, 

with slightly more strength exhibited by the improved connection. This similarity was not surprising, 

reinforcement provided the tension transfer mechanism for both connections. In the 

positive moment direction, however, the as-built connection performed noticeably poorer than the 

improved connection. In fact, deterioration of the as-built connection ended up dictating the end of the 

els. Plastic hinges were 

Also, although the different connection 

details employed on the two sides of the cap beam meant that connection flexural stiffnesses would 

ections, the figure shows that both connections produced very similar 

Overall, the test clearly demonstrated the suitability of the 

 

displacement response envelope from system test Phase I 

built and improved connection 

ators were used only to provide stability. The vertical 

from the column centerline and were 

used to subject the superstructure to large vertical forces and displacements, also subjecting the girder-

provides the peak moment values 

nd negative moment directions. In the 

built and improved connections was similar, 

with slightly more strength exhibited by the improved connection. This similarity was not surprising, 

reinforcement provided the tension transfer mechanism for both connections. In the 

built connection performed noticeably poorer than the 

d up dictating the end of the 
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experimental test; once the positive moment continuity of the as

configuration prevented the development of larger moments in the improved connection. 

loss in stiffness in the as-built connection, 

considerably higher than the maximum demand during the seismic test, thus indicating i

providing an integral connection and allowing plastic hinge formation in the column.

 

 a. Negative moment in girder-to-

Figure 4.4. Moment-displacement behavior of system test unit due to peak vertical loads

4.4.1. General description 

To fully quantify the behavior of the improved connection incorporated in the system test, a 50%

scale component test of the connection region was devised to experimentally verify the connection 

detail without re-creating the whole bridge system. 

representation of the connection test configuration. 

opportunity to fully exercise two different girder

other, consisted of a single column, footing, and cap beam, along with two I

model the composite girder section behavior, a bridge deck was included in the test unit. However, the 

deck was split between the two girders as shown in the figure to allow th

tested separately.  
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experimental test; once the positive moment continuity of the as-built connection was lost, the test unit 

configuration prevented the development of larger moments in the improved connection. 

built connection, Figure 4.4b shows that its positive moment strength

higher than the maximum demand during the seismic test, thus indicating i

providing an integral connection and allowing plastic hinge formation in the column. 

 

-cap connection b. Positive moment in girder-to-

displacement behavior of system test unit due to peak vertical loads

4.4. Experimental configuration 

To fully quantify the behavior of the improved connection incorporated in the system test, a 50%

onnection region was devised to experimentally verify the connection 

creating the whole bridge system. Figure 4.5 provides a three

representation of the connection test configuration. The test unit, which was designed to provide the 

opportunity to fully exercise two different girder-to-cap connection details independently from each 

ingle column, footing, and cap beam, along with two I-girders. 

model the composite girder section behavior, a bridge deck was included in the test unit. However, the 

deck was split between the two girders as shown in the figure to allow the two connection details to be 

built connection was lost, the test unit 

configuration prevented the development of larger moments in the improved connection. Despite the 

shows that its positive moment strength was 

higher than the maximum demand during the seismic test, thus indicating its sufficiency in 

 

-cap connection 

displacement behavior of system test unit due to peak vertical loads 

To fully quantify the behavior of the improved connection incorporated in the system test, a 50%-

onnection region was devised to experimentally verify the connection 

provides a three-dimensional 

The test unit, which was designed to provide the 

cap connection details independently from each 

girders. To appropriately 

model the composite girder section behavior, a bridge deck was included in the test unit. However, the 

e two connection details to be 



www.manaraa.com

 

 

Figure 4

4.4.2. Cap beam and column design

A secondary objective of the connection test was to offer proof of concept for

precast cap beam. The field implementation of such a concept could decrease onsite construction time 

and be well-suited for ABC methods. To be used as a precast element, the cap beam was designed with 

ducts in the column region as shown in

longitudinal bars; thus, after the cap beam was precast, it was simply set in place on top of the colu

with the column longitudinal bars (shown in 

ducts were then filled with high-strength grout [f’

cap beam to the column.  

In a prototype structure, the girder

when subjected to the highest seismic demands, since elastic superstructure behavior is cr

successful performance following capacity design principles that localize inelastic deformations in the 

column plastic hinge regions. In this test setup, however, the intent was to fully exercise and quantify 

the girder-to-cap connections well b

expected to be subjected to torsional loads well beyond those that would be experienced by a cap beam 
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4.5. Connection test configuration concept 

design 

A secondary objective of the connection test was to offer proof of concept for

precast cap beam. The field implementation of such a concept could decrease onsite construction time 

suited for ABC methods. To be used as a precast element, the cap beam was designed with 

ducts in the column region as shown in Figure 4.6a. These ducts were designed to align with the column 

longitudinal bars; thus, after the cap beam was precast, it was simply set in place on top of the colu

with the column longitudinal bars (shown in Figure 4.6b) extending up into the cap beam ducts. The 

strength grout [f’c = 46 MPa (6700 psi) at 7 days] to securely anchor the 

In a prototype structure, the girder-to-cap connection would be expected to remain elastic, even 

when subjected to the highest seismic demands, since elastic superstructure behavior is cr

successful performance following capacity design principles that localize inelastic deformations in the 

column plastic hinge regions. In this test setup, however, the intent was to fully exercise and quantify 

cap connections well beyond their elastic limit. Therefore, the test unit cap beam was 

expected to be subjected to torsional loads well beyond those that would be experienced by a cap beam 

 

A secondary objective of the connection test was to offer proof of concept for implementing a 

precast cap beam. The field implementation of such a concept could decrease onsite construction time 

suited for ABC methods. To be used as a precast element, the cap beam was designed with 

. These ducts were designed to align with the column 

longitudinal bars; thus, after the cap beam was precast, it was simply set in place on top of the column, 

b) extending up into the cap beam ducts. The 

6700 psi) at 7 days] to securely anchor the 

cap connection would be expected to remain elastic, even 

when subjected to the highest seismic demands, since elastic superstructure behavior is critical for 

successful performance following capacity design principles that localize inelastic deformations in the 

column plastic hinge regions. In this test setup, however, the intent was to fully exercise and quantify 

eyond their elastic limit. Therefore, the test unit cap beam was 

expected to be subjected to torsional loads well beyond those that would be experienced by a cap beam 
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in a prototype structure. To account for the additional torsion, longitudinal ducts were added to the cap 

beam as shown in Figure 4.6a to provide the opportunity to add torsional capacity during the latter 

stages of testing by introducing post-tensioning. Additional steel was also added in the non-connection 

side of the cast-in-place diaphragm to further increase the cap’s torsional resistance. 

  

 a. Cap beam prior to casting concrete b. Column and footing prior to 

  cap beam placement 

Figure 4.6. Connection test construction photographs 

Since the girder-to-cap connection negative moment capacity was significantly higher than the 

positive moment capacity, the design cap beam torsion was related to the predicted negative moment 

connection performance. To determine this design torsion, the maximum expected negative girder-to-

connection moment was estimated assuming yielding of the deck steel as the failure mechanism. The 

tributary area of deck steel contributing to the connection behavior was estimated as 5160 mm
2
 (8.0 

in
2
), and the moment arm was conservatively estimated as 813 mm (32.0 in), based on the distance 

from the center of the deck steel to the top of the girder lower flange. Therefore, the expected moment 

was calculated as: 

 Mexp = As fy j = (5160 mm
2
)(414 MPa)(813 mm) = 1737 kN-m (1280 kip-ft) (Eq. 4.1) 

This moment was increased by 10% to determine the design torsional load in the cap beam to be 1910 

kN-m (1408 kip-ft). The torsional capacity of the cap beam without post-tensioning was determined 

using the approach from Priestley et al. (1996) to be 472 kN-m (348 kip-ft); this calculation was verified 
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by comparing it with the ACI (2011) approach which yielded very similar results. Priestley’s approach 

was then used to determine the additional torsional capacity of the cap beam utilizing post-tensioning 

and incorporating the contribution of the mild reinforcement. Post-tensioning was accomplished using 

six DYWIDAG bars capable of carrying 356 kN (80 kips) each, and the mild steel provided an additional 

clamping force of 1677 kN (377 kips). Continuing with Priestley’s approach, the combined clamping force 

of 3812 kN (857 kips) was calculated to increase the torsional capacity of the cap to 2120 kN-m (1564 

kip-ft), sufficiently larger than the predicted design torsional load. 

For configuration simplicity, the test column was designed to be square, since the column itself was 

not part of the test specimen and was not intended to represent a prototype bridge structure. The 

column was designed to remain elastic up to the ultimate capacity of the girder-to-cap beam 

connection. A design moment value of 1910 kN-m (1408 kip-ft) was established for the column. This 

design value was based on the same predicted performance of the connection in the negative moment 

direction that was used in the cap beam design above. The predicted axial load in the column was 

determined to be 231 kN (52 kips), based on the girder, cap beam, and column weight and the expected 

actuator test loads. Using the ACI (2011) interaction approach, the required area of steel for the column 

was determined to be 19230 mm
2
 (29.8 in

2
). To accommodate the precast cap beam connection, sixty  

#22M (#7 U.S.) bars were chosen to provide a total steel area of 23230 mm
2
 (36.0 in

2
). These bars were 

arranged in bundles of three around the perimeter the column so they could easily be inserted into the 

ducts of the precast cap beam. 

4.4.3. Grouted Unstressed Strand Connection (GUSC) detail 

One of the girder-to-cap connection details implemented in the connection test was a duplicate of 

the improved connection in the previous system test. Since this connection concept incorporated 

unstressed strands positioned in the girder bottom flange and the lower region of the cap beam and 

then grouted in place, it was referred to as the Grouted Unstressed Strand Connection (GUSC). The 

GUSC detail duplicated the improved connection from the system test, including the dowel bars from 

the as-built connection but relying primarily on the deck reinforcement for negative moment tension 

continuity and the unstressed strands for positive moment continuity (see Figure 4.7a). In the system 

test, the unstressed strand was run through ducts extending through the girder bottom flange for the 

entire longitudinal girder length, as shown in Figure 4.7b. However, strand testing after the system test 
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indicated that terminating the strand a certain distance from the connection region would provide 

sufficient anchorage to develop the full tens

connection test, the strand ducts were fluted out 

cap interface at the test unit scale, as shown in 

a. Location of connection reinforcement

 

 b. Continuous strands in

 girder bottom flange

Figure 4.7. Reinforcement in 

4.4.4. Looped Unstressed Strand Connection (LUSC) d

A schematic view of the second girder

shown in Figure 4.8. This detail was referred to as the Looped Unstressed Strand Connection (LUSC). 

Moment continuity in this connection 

the lower portion of the girder and extending them through continuous looped unstressed strands that 

85 

indicated that terminating the strand a certain distance from the connection region would provide 

sufficient anchorage to develop the full tension capacity of the strand. Thus, for the GUSC detail in the 

connection test, the strand ducts were fluted out from the girder bottom flange 3.0 m

, as shown in Figure 4.7c. 

 

a. Location of connection reinforcement 

 

b. Continuous strands in c. Anchorage of strands beyond

girder bottom flange connection region

. Reinforcement in grouted unstressed strand connection (GUSC) (test unit scale

essed Strand Connection (LUSC) detail 

A schematic view of the second girder-to-cap connection detail investigated in the 

This detail was referred to as the Looped Unstressed Strand Connection (LUSC). 

Moment continuity in this connection was accomplished by enlarging and relocating the dowel bars to 

the lower portion of the girder and extending them through continuous looped unstressed strands that 

indicated that terminating the strand a certain distance from the connection region would provide 

ion capacity of the strand. Thus, for the GUSC detail in the 

from the girder bottom flange 3.0 m from the girder-

 

c. Anchorage of strands beyond 

connection region 

test unit scale) 

cap connection detail investigated in the connection test is 

This detail was referred to as the Looped Unstressed Strand Connection (LUSC). 

by enlarging and relocating the dowel bars to 

the lower portion of the girder and extending them through continuous looped unstressed strands that 
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extended out from the cap beam ledge. The desired tension load pat

completed by additional unstressed strand cast into the 

intended to provide confinement of

dowel bar blockouts. The blockouts 

dowels. The entire region was again encased by a cast

detail. The positive moment continuity in the LUSC detail 

LUSC detail utilized an offset path of continuous longitudinal steel between the girder bottom flange 

and the cap beam. While this load path may have been slightly less straightforward than the tension 

continuity provided in the GUSC detail,

of strand ducts during field assembly like the GUSC specimen. Looped strands that protrude from the 

cap beam ledge on either side of the girder provide

headed dowel bars that ran through the girder and form

shear friction mechanism between the dowe

primary path for positive moment 

little difference in the LUSC and GUSC concepts, since the deck reinforcement provided the principle 

negative moment tension continuity for both details.

both the GUSC and LUSC details is provid

Figure 4.8. Looped unstressed strand connection (LUSC)

4.4.5. Girder, diaphragm, and deck design

The girders were designed to model the largest standard California 

girders that had been previously used in the system test. Modifications were made to the girder ends 

86 

out from the cap beam ledge. The desired tension load path at the bottom of the girder was

d by additional unstressed strand cast into the girder. These additional girder

intended to provide confinement of the dowel bars passing through the girder by looping around the 

dowel bar blockouts. The blockouts were filled with grout to ensure bond between the girder 

again encased by a cast-in-place concrete diaphragm, similar to the GUSC 

detail. The positive moment continuity in the LUSC detail was different from the GUSC detail in that the 

an offset path of continuous longitudinal steel between the girder bottom flange 

While this load path may have been slightly less straightforward than the tension 

continuity provided in the GUSC detail, the LUSC had the advantage of not requiring 

of strand ducts during field assembly like the GUSC specimen. Looped strands that protrude from the 

cap beam ledge on either side of the girder provided ample clearance as they wrapped

through the girder and formed a link with added strand in the girder

between the dowel bars and the looped strands was expected to be 

positive moment tension load transfer. As for negative moment continuity

in the LUSC and GUSC concepts, since the deck reinforcement provided the principle 

negative moment tension continuity for both details. Additional information on the design concepts for 

both the GUSC and LUSC details is provided in Sritharan et al. (2013). 

 

. Looped unstressed strand connection (LUSC) (test unit scale)

Girder, diaphragm, and deck design 

The girders were designed to model the largest standard California I-girder and coincided with the 

girders that had been previously used in the system test. Modifications were made to the girder ends 

h at the bottom of the girder was 

girder. These additional girder strands were 

by looping around the 

ure bond between the girder and 

place concrete diaphragm, similar to the GUSC 

different from the GUSC detail in that the 

an offset path of continuous longitudinal steel between the girder bottom flange 

While this load path may have been slightly less straightforward than the tension 

 precise alignment 

of strand ducts during field assembly like the GUSC specimen. Looped strands that protrude from the 

ped around the T-

with added strand in the girder. A 

expected to be the 

tension load transfer. As for negative moment continuity, there was 

in the LUSC and GUSC concepts, since the deck reinforcement provided the principle 

Additional information on the design concepts for 

(test unit scale) 

girder and coincided with the 

girders that had been previously used in the system test. Modifications were made to the girder ends 
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according to each connection detail. For the GUSC, ducts were been added to the bottom flange of the 

girder as shown previously in Figure 4.7. For the LUSC, four looped strands were attached to an anchor 

plate and ducts were positioned the girder to allow placement of the dowel bars as shown in Figure 4.8.  

The diaphragm was designed to duplicate the system test configuration, representative of the 

diaphragm that would be utilized in a prototype structure utilizing this system. However, on the side of 

the diaphragm opposite the girders, additional mild reinforcement was included in the cap beam 

longitudinal direction to increase the cap beam torsional capacity, described in detail earlier. 

The bridge deck was split into two separate portions with a gap between the two girders so that 

each girder and connection could be exercised independently. The width of the bridge deck above each 

girder was 1435 mm (4’-8 1/2”), based on AASHTO’s recommended tributary width (AASHTO, 2012). The 

reinforcement incorporated in the deck was a duplication of the reinforcement utilized in the system 

test, which was representative of the deck reinforcement in the prototype bridge. 

4.4.6. Load protocol 

The main objective in loading the test unit was to simulate the prototype shear and moment in the 

girder-to-cap connection region for conditions simulating gravity and horizontal seismic loading along 

with consideration for vertical acceleration effects. Since both connection details are intended for use in 

a bridge configuration similar to the system test unit, analytical predictions (for example Snyder, 2010 

and Theimann, 2010) and experimental results from the system test provided helpful data in 

determining a suitable load protocol. The system test study was used to establish test-scale values of 

125 kN (28 kips) and -141 kN-m (-104 kip-ft) for the gravity-only shear and moment, respectively, as 

shown in Table 4.1. The system test results were also used to establish the column overstrength 

moment due to horizontal seismic loading that the bridge superstructure would be required to resist. 

Lateral load distribution results from the system test as well as other similar large-scale experimental 

studies were used to determine comparable shear and moment magnitudes that would be experienced 

in the individual girder connections. A detailed explanation of this lateral load distribution work is found 

in Vander Werff and Sritharan (2014). Resulting shear and moment values, in both the positive and 

negative directions, are shown in the second row of Table 4.1 for the load scenario that includes gravity 

load and full horizontal seismic load in either longitudinal direction. 
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Table 4.1. Proposed connection test load protocol 

LOADING 

PROTOCOL 

Negative Shear and Moment Positive Shear and Moment 

Shear, kN (kips) Moment, kN-m (kip-ft) Shear, kN (kips) Moment, kN-m (kip-ft) 

Gravity Only 142 (32) 114 (84) 0 0 

Gravity + 100% Seismic                       

No vertical acceleration 
160 (36) 438 (323) 93 (21) 230 (170) 

Gravity + 100% Seismic 

+ 0.25 g Vertical 

Acceleration 

191 (43) 475 (350) 107 (24) 239 (176) 

Percentage increase 

from gravity/horizontal 
19% 8% 14% 4% 

Gravity + 100% Seismic 

+   0.5 g Vertical 

Acceleration 

222 (50) 510 (376) 120 (27) 248 (183) 

Percentage increase 

from gravity/horizontal 
39% 16% 29% 8% 

Gravity + 100% Seismic 

+       1.0 g Vertical 

Acceleration 

285 (64) 582 (429) 147 (33) 294 (217) 

Percentage increase 

from gravity/horizontal 
78% 33% 57% 28% 

 

The other aspect of seismic loading that the connection test was designed to investigate was vertical 

ground motion. The Caltrans SDC mild side reinforcement requirement for vertical acceleration shear 

mentioned in Section 4.2 is a major impediment to implementation of the inverted-tee cap and dapped-

end girder system, because there is no room on the bottom flange of the girder to include this additional 

steel. In addition, recent earthquakes (especially the 2011 Christchurch, New Zealand, event) raised 

awareness of the susceptibility of structures to vertical acceleration effects (Kam and Pampanin, 2011). 

Observations during the system test had indicated that the GUSC detail had sufficient shear capacity to 

meet the vertical acceleration demands without including additional reinforcement, and the LUSC detail 

was expected to behave similarly. Thus, a main goal of the connection test was to subject the 

connection details to simulated vertical acceleration load and verify that the connections could be 

implemented without including the additional reinforcement required by the current Caltrans SDC 

(2013). To accomplish this objective, the load protocol as shown in Table 4.1 was developed to include 

simulated vertical acceleration effects in the connection region in addition to the expected shear and 

moment demand from gravity and horizontal seismic loading. 
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Since the performance of the girder

the load protocol was to properly simulate the shear and moment in the connection region rather than 

duplicate the shear and moment along the entire length of the girders. Therefore, with the test setup 

introduced earlier in Figure 4.5, the two actuators 

second located 7.6 m (25 ft) from the connection] 

moment appropriately. To illustrate this approach, 

for the gravity-only simulated condition shown in row 1 of 

values along the length of the girder vary due to the concentrated loads introduced by the actuators, the 

connection shear and moment values are properly simulated. By varying both actuator loads in both 

directions as needed, any desired shear and moment values could be deve

test unit.  

 

 a. Shear diagram 

Figure 4.9. Test unit girder shear and moment diagrams at gravity simulation condition

Once the target values were established, a cyclic load protocol was developed to incrementally 

reach the target peaks. The protocol was divided into three phases. Phase I incorporated cyclic loading 

to reach the full gravity-plus-horizontal

seismic but also added the effects of increasing magnitudes of vertical acceleration, applied as 

pseudostatic loads based on the scaled prototype mass. Finally, Phase III utilized large forces and 

displacements to fully exercise the girder connections. 

the load sequence in each of the three phases. Note that these figures have

the actual loads used during testing, rather than the planned loads prior to testing. The corresponding 

connection shear followed a very similar pattern to the connection moment, so the shear load sequence 

figures are omitted for brevity. 
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Since the performance of the girder-to-cap connection was the primary focus of the test, the goal of 

the load protocol was to properly simulate the shear and moment in the connection region rather than 

along the entire length of the girders. Therefore, with the test setup 

, the two actuators [one located 3.05 m (10 ft) from the conne

second located 7.6 m (25 ft) from the connection] could be used to vary the connection region shear and 

To illustrate this approach, Figure 4.9 provides the shear and moment diagrams 

only simulated condition shown in row 1 of Table 4.1. While the shear and moment 

ngth of the girder vary due to the concentrated loads introduced by the actuators, the 

connection shear and moment values are properly simulated. By varying both actuator loads in both 

directions as needed, any desired shear and moment values could be developed in the connection of the 

 

 b. Moment diagram

. Test unit girder shear and moment diagrams at gravity simulation condition

Once the target values were established, a cyclic load protocol was developed to incrementally 

reach the target peaks. The protocol was divided into three phases. Phase I incorporated cyclic loading 

horizontal-seismic load condition. Phase II included gravity and horizontal 

seismic but also added the effects of increasing magnitudes of vertical acceleration, applied as 

pseudostatic loads based on the scaled prototype mass. Finally, Phase III utilized large forces and 

ents to fully exercise the girder connections. Figure 4.10 shows the connection moment for 

the load sequence in each of the three phases. Note that these figures have been adjusted to represent 

the actual loads used during testing, rather than the planned loads prior to testing. The corresponding 

connection shear followed a very similar pattern to the connection moment, so the shear load sequence 

cap connection was the primary focus of the test, the goal of 

the load protocol was to properly simulate the shear and moment in the connection region rather than 

along the entire length of the girders. Therefore, with the test setup 

[one located 3.05 m (10 ft) from the connection and a 

could be used to vary the connection region shear and 

provides the shear and moment diagrams 

. While the shear and moment 

ngth of the girder vary due to the concentrated loads introduced by the actuators, the 

connection shear and moment values are properly simulated. By varying both actuator loads in both 

loped in the connection of the 

 

b. Moment diagram 

. Test unit girder shear and moment diagrams at gravity simulation condition 

Once the target values were established, a cyclic load protocol was developed to incrementally 

reach the target peaks. The protocol was divided into three phases. Phase I incorporated cyclic loading 

ndition. Phase II included gravity and horizontal 

seismic but also added the effects of increasing magnitudes of vertical acceleration, applied as 

pseudostatic loads based on the scaled prototype mass. Finally, Phase III utilized large forces and 

shows the connection moment for 

been adjusted to represent 

the actual loads used during testing, rather than the planned loads prior to testing. The corresponding 

connection shear followed a very similar pattern to the connection moment, so the shear load sequence 
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 a. Phase I (Gravity and horizontal seismic l

  

Figure 4.10. Load protocol f

4.4.7. Construction  

Construction of the test unit was completed in the structural laboratory of Iowa State University 

(ISU). Traditional cast-in-place concrete methods were used for the footing and column. The cap beam 

was also constructed as a separate unit at ISU

part of ABC. Figure 4.6, shown previously, provides photographs of the cap beam prior to concrete 

placement and the column/footing assembly prior to cap beam placement. 

connection, the sixty #22M (#7 U.S.

approximately the top of the cap beam, but the column concrete was cast only to the bottom 

the cap beam. In the cap beam, corrugated ducts were positioned to match the column longitudinal bar 

locations. This detail allowed the cap beam 

the column bars and sliding it down. Once positioned, the cap

strength fiber-reinforced grout [f’c 

strength grout without fibers [f’c = 
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(Gravity and horizontal seismic load) b. Phase II (Gravity, horizontal seismic,

and vertical acceleration l

 

c. Phase III (Displacement control) 

. Load protocol for connection test of GUSC detail 

Construction of the test unit was completed in the structural laboratory of Iowa State University 

place concrete methods were used for the footing and column. The cap beam 

as a separate unit at ISU to demonstrate the viability of using precast cap beam

, shown previously, provides photographs of the cap beam prior to concrete 

placement and the column/footing assembly prior to cap beam placement. For the column

sixty #22M (#7 U.S.) column longitudinal bars (in bundles of 3) were ext

approximately the top of the cap beam, but the column concrete was cast only to the bottom 

In the cap beam, corrugated ducts were positioned to match the column longitudinal bar 

locations. This detail allowed the cap beam to be easily set in place and positioned by lining it up with 

the column bars and sliding it down. Once positioned, the cap-to-column interface was filled using high

 = 61 MPa (8900 psi) at 7 days] and the ducts were fil

= 46 MPa (6700 psi) at 7 days] to complete the connection. 

 

(Gravity, horizontal seismic, 

and vertical acceleration load) 

Construction of the test unit was completed in the structural laboratory of Iowa State University 

place concrete methods were used for the footing and column. The cap beam 

to demonstrate the viability of using precast cap beams as 

, shown previously, provides photographs of the cap beam prior to concrete 

For the column-to-cap 

) were extended to 

approximately the top of the cap beam, but the column concrete was cast only to the bottom surface of 

In the cap beam, corrugated ducts were positioned to match the column longitudinal bar 

to be easily set in place and positioned by lining it up with 

was filled using high-

and the ducts were filled with high-

to complete the connection. Steel fibers 
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with 19 mm (0.75 in.) length were included in the cap-to-column interface grout, using a volumetric 

fiber-to-grout ratio of 0.015, because of the cyclic tension and compression load that the interface 

would experience, but they were excluded from the ducts for ease of grout placement. The specific 

fibers and quantities used were based on results from previous successful tests. The completed column-

cap assembly is shown in Figure 4.11a. 

The precast girders were constructed by Andrews Prestressed Concrete in Clear Lake, Iowa, and 

shipped to ISU. The girders were positioned on the cap beam and supported at the free end by 

temporary steel formwork as shown in Figure 4.11b. Dowel bars were placed through the girders and 

into the diaphragm region according to each connection detail. For the GUSC, the four unstressed 

strands were run through the girder and cap beam by simply aligning the girder and cap beam and 

sliding the strands through. The quantity of strands was chosen by designing them to resist the tension 

produced by the positive moment that would be expected to develop in the connection under full 

seismic conditions. The strands were then grouted in place, after which they were anchored against the 

back side of the cap beam using standard anchorage chucks. Although previous component testing had 

indicated that the grout alone would provide sufficient strand anchorage, the chucks were included as a 

precaution to allow continuation of the test in the event of bond anchorage failure. The load at one of 

the anchorage points was monitored during the test to determine whether the grout alone was 

sufficient to anchor the strand. 

High-strength grout [f’c = 88 MPa (12.7 ksi) at 7 days] was used to complete the interface between 

the girders and cap beam. Because of the cyclic nature of the connection load under seismic conditions, 

steel fibers were incorporated into the grout mix in the same manner as for the column-to-cap 

interface. Once the girder-cap interface was established, the formwork for the diaphragms on the front 

and back sides of the cap beam was erected. In addition, the formwork for the two split decks was 

erected by using temporary girder brackets on each side of the two girders; this formwork is shown in 

Figure 4.11c. After placement of the diaphragm and deck concrete and removal of the formwork, the 

test actuator frames were positioned over the GUSC girder and the two actuators were attached as 

shown in Figure 4.11d. After testing the GUSC detail, the frames and actuators were repositioned over 

the LUSC girder for testing of that connection detail. Concrete strengths for the girders, cap beam, and 

diaphragm are provided in Table 4.2. 
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 a. Cap beam prior to girder, diaphragm b. Girders prior to diaphragm and deck placement 

 and deck placement 

 
c. Deck formwork and reinforcement 

 
d. Completed test unit and load frames 

Figure 4.11. Construction and test configuration photographs 

Table 4.2. Test unit concrete strengths 

Component 
7-day strength, 

MPa (psi) 

28-day strength, 

MPa (psi) 

Test day strength, 

MPa (psi) 

Cap beam corbel 33 (4750) 41 (5918) 48 (7005) 

Cap beam stem 25 (3653) 32 (4704) 39 (5618) 

Girder Not recorded 70 (10,200) Not recorded 

Deck & Diaphragm 30 (4319) Not recorded 38 (5460) 
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4.4.8. Instrumentation 

Approximately 100 strain gages were installed on the reinforcement in the test unit. These strain 

gages were positioned to investigate the cap beam, girder, deck, diaphragm, and column performance, 

with a focus on the behavior of the connection region. In addition, approximately 30 external 

displacement transducers were utilized during each of the connection tests to record the test unit 

movement and deformation. 

Both the GUSC and LUSC details were instrumented with LED position indicators, as shown in Figure 

4.12. The data from these indicators enabled the determination of the relative displacement of the 

girder compared to the face of the diaphragm. Since positive moment performance in particular was of 

interest, the LED data was used to look at the relative movement of the girder bottom flange and thus 

provide an indication of how much slip was occurring between the girder and the cap beam. 

 

Figure 4.12. LED indicators to record position during experimental testing 

4.5. Experimental results 

4.5.1. Overall connection behavior 

Both the GUSC and LUSC details performed very well during the experimental testing. Both 

exhibited elastic behavior for positive moment magnitudes considerably higher than the expected 

demand at the full horizontal seismic condition. In fact, for both details the elastic behavior continued to 

magnitudes approximately 1.25 times higher than the demand expected at full horizontal seismic load 

plus 1.0-g vertical acceleration. Figure 4.13 shows the connection moment history for both tests plotted 
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as functions of vertical displacement at the 

signifies the maximum expected horizontal seismic demand based on the column overstrength moment 

and “V” signifies the demand expected from 1.0

helpful in identifying the magnitude of moment 

demonstrated elastic behavior up to positive connection moment magnitudes near 400 kip

2.4 times higher than the expected full horizontal seismic positive moment of 

double the full horizontal plus 1.0-

elastic moment behavior in both connections up to magnitudes considerably higher than expected 

seismic demands, including both horizontal and vertical effects. In addition, the plots show that both 

connections exhibited considerable ductility 

Figure 4.13. Recorded connection moment as a function of vertical displacement at the far actuator
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as functions of vertical displacement at the Actuator 2 location (see Figure 4.11c). In the

signifies the maximum expected horizontal seismic demand based on the column overstrength moment 

and “V” signifies the demand expected from 1.0-g magnitude vertical acceleration. 

helpful in identifying the magnitude of moment demand generated during the tests. Both connections 

demonstrated elastic behavior up to positive connection moment magnitudes near 400 kip

2.4 times higher than the expected full horizontal seismic positive moment of 170 

-g vertical condition of 215 kip-ft. The plots also clearly demonstrate 

elastic moment behavior in both connections up to magnitudes considerably higher than expected 

seismic demands, including both horizontal and vertical effects. In addition, the plots show that both 

hibited considerable ductility for both positive and negative moment response

a. GUSC test 

b. LUSC test 

onnection moment as a function of vertical displacement at the far actuator

In these plots, “H” 

signifies the maximum expected horizontal seismic demand based on the column overstrength moment 

g magnitude vertical acceleration. These plots are 

demand generated during the tests. Both connections 

demonstrated elastic behavior up to positive connection moment magnitudes near 400 kip-ft, almost 

 kip-ft, and almost 

ft. The plots also clearly demonstrate 

elastic moment behavior in both connections up to magnitudes considerably higher than expected 

seismic demands, including both horizontal and vertical effects. In addition, the plots show that both 

response.  

 

 

onnection moment as a function of vertical displacement at the far actuator 
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Figure 4.14 shows the connection shear 

very similar pattern was used for the LUSC test) 

portion of the boxed pattern shows the load incrementally advancing to the full gravity condition. Then 

the remainder of the boxed pattern extending to higher shear values and larger negative moment values 

shows the negative shear and moment conditions advancing through horizontal seismic and into large 

vertical acceleration simulations. The diamond

moment during the horizontal seismic simulation initially and conc

acceleration simulations. The “x” and triangle

that were not simulations of any specific prototype conditions but rather were intended to fully exercise 

and quantify the connection behavior.

Figure 4

4.5.2. Failure mechanisms 

The concrete in the connection region of the GUSC detail remained largely intact for the duration of 

testing. The primary failure mechanism of the connection was the fracture of one of the connection 

strands. Figure 4.15 provides a view looking straight up into the connection region at the girder

interface under the maximum positive moment displacement. The strand on the right in the photograph 

is seen to have remained intact, while the strand on the left fractured. The photograph also shows that, 
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shows the connection shear at the first load/displacement peaks during the GUSC 

very similar pattern was used for the LUSC test) plotted as a function of connection moment. 

pattern shows the load incrementally advancing to the full gravity condition. Then 

pattern extending to higher shear values and larger negative moment values 

negative shear and moment conditions advancing through horizontal seismic and into large 

mulations. The diamond patterns show the conditions associated with positive 

moment during the horizontal seismic simulation initially and concluding with the larger vertical 

leration simulations. The “x” and triangle patterns show the large force/displacement conditions 

that were not simulations of any specific prototype conditions but rather were intended to fully exercise 

connection behavior. 

4.14. Connection shear resistance in GUSC 

The concrete in the connection region of the GUSC detail remained largely intact for the duration of 

testing. The primary failure mechanism of the connection was the fracture of one of the connection 

provides a view looking straight up into the connection region at the girder

interface under the maximum positive moment displacement. The strand on the right in the photograph 

emained intact, while the strand on the left fractured. The photograph also shows that, 

during the GUSC test (a 

of connection moment. The initial 

pattern shows the load incrementally advancing to the full gravity condition. Then 

pattern extending to higher shear values and larger negative moment values 

negative shear and moment conditions advancing through horizontal seismic and into large 

show the conditions associated with positive 

luding with the larger vertical 

patterns show the large force/displacement conditions 

that were not simulations of any specific prototype conditions but rather were intended to fully exercise 

 

The concrete in the connection region of the GUSC detail remained largely intact for the duration of 

testing. The primary failure mechanism of the connection was the fracture of one of the connection 

provides a view looking straight up into the connection region at the girder-to-cap 

interface under the maximum positive moment displacement. The strand on the right in the photograph 

emained intact, while the strand on the left fractured. The photograph also shows that, 
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even at this extreme stage of the test, the grout pad between the girder vertical face and the cap beam 

girder face remained in place, held by the unstressed strand. 

 

Figure 4.15. GUSC girder-cap interface during peak positive-moment displacement (looking up) 

Fracture of the strand as the primary failure mechanism is significant for a couple of reasons. First, 

its fracture indicated that the grout on both sides of the interface (in the cap beam as well as in the 

girder bottom flange) provided sufficient anchorage to fully develop the strength of the strand. As 

mentioned earlier, a load cell was used to monitor the behavior of the strand at the back side of the cap 

beam. This monitoring revealed that, for the duration of the test, no load was transferred at the strand’s 

anchorage point; thus, the grout/strand bond in the cap beam was sufficient to completely anchor the 

strand. Second, the fracture of the strand under positive moment loading indicated that the strand 

played a significant frictional role in providing positive moment connection capacity, as per the design 

intent. 

Fractured 

connection 

strand 

Terminated girder 

prestressed strands 

Grout pad 

Intact 

connection 

strand 

Edge of girder after being pulled out ~1 in. 

No spalling 

between grout 

pad & girder 
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The positive moment failure mechanism in the LUSC detail was not quite as str

GUSC detail. Observations at the conclusion of the LUSC test indicated that the failure of the connection 

under positive moment loading was related to the interaction of the diaphragm concrete, the looped 

strands, and the dowel bars. At the highest displacement cycles

crack and separation of the diaphragm around the dowel bars was observed, as shown in 

Figure 4.16. Condition of the diaphragm of LUSC detail at peak positive (upward) girder displacement

4.5.3. Behavior of the connection interface

The LED indicators introduced in Section 

between the girder and diaphragm at their interface. 

provided in Figure 4.17. Both details exhibited similar relative displacement tendencies. 

displacements in the GUSC are slightly higher than

connection in the positive moment direction can be attributed to the positive moment tension 

mechanism. In the GUSC, the unstressed strand is primarily responsible for tension transfer, so as it 

elongates elastic it allows slight movement at the girder

97 

The positive moment failure mechanism in the LUSC detail was not quite as straightforward as the 

GUSC detail. Observations at the conclusion of the LUSC test indicated that the failure of the connection 

under positive moment loading was related to the interaction of the diaphragm concrete, the looped 

the highest displacement cycles of Phase III loading

crack and separation of the diaphragm around the dowel bars was observed, as shown in 

iaphragm of LUSC detail at peak positive (upward) girder displacement

of 4.5 in. at Actuator 2 

Behavior of the connection interface 

introduced in Section 0 were used to investigate the relative displacement 

between the girder and diaphragm at their interface. The results of the analysis for bot

. Both details exhibited similar relative displacement tendencies. 

displacements in the GUSC are slightly higher than for the LUSC. The slightly lower stiffness of the GUSC 

connection in the positive moment direction can be attributed to the positive moment tension 

mechanism. In the GUSC, the unstressed strand is primarily responsible for tension transfer, so as it 

ates elastic it allows slight movement at the girder-to-cap interface. In the LUSC detail, on the 

aightforward as the 

GUSC detail. Observations at the conclusion of the LUSC test indicated that the failure of the connection 

under positive moment loading was related to the interaction of the diaphragm concrete, the looped 

of Phase III loading, a clearly defined 

crack and separation of the diaphragm around the dowel bars was observed, as shown in Figure 4.16. 

 

iaphragm of LUSC detail at peak positive (upward) girder displacement 

were used to investigate the relative displacement 

The results of the analysis for both details are 

. Both details exhibited similar relative displacement tendencies. The relative 

for the LUSC. The slightly lower stiffness of the GUSC 

connection in the positive moment direction can be attributed to the positive moment tension 

mechanism. In the GUSC, the unstressed strand is primarily responsible for tension transfer, so as it 

cap interface. In the LUSC detail, on the 
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other hand, the tension continuity is provided by the interaction of the dowel bars, strands, and 

concrete, thus resulting in less elastic movement prior to r

Figure 4.17. Relative displacement of lower interface between girder and diaphragm

4.5.4. Performance of the GUSC detail

Strain gages were used to monitor the strain in the unstressed strands throughout the GUSC test. 

Figure 4.18a provides strain values from near the connection interfac

positive moment peak conditions for most of the Phase III portion of the test. 
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other hand, the tension continuity is provided by the interaction of the dowel bars, strands, and 

concrete, thus resulting in less elastic movement prior to reaching the connection ultimate capacity. 

a. GUSC detail 

b. LUSC detail 

. Relative displacement of lower interface between girder and diaphragm

detail 

Strain gages were used to monitor the strain in the unstressed strands throughout the GUSC test. 

provides strain values from near the connection interface in one of the strands for the 

positive moment peak conditions for most of the Phase III portion of the test. The dowel bars that were 

other hand, the tension continuity is provided by the interaction of the dowel bars, strands, and 

eaching the connection ultimate capacity.  

 

 

. Relative displacement of lower interface between girder and diaphragm 

Strain gages were used to monitor the strain in the unstressed strands throughout the GUSC test. 

e in one of the strands for the 

The dowel bars that were 
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duplicated from the as-built connection also contributed to the connection performance; 

provides these strain values for the same peak conditions as in 

each curve in Figure 4.18a indicate the corresponding load/displacement peak; the points labeled as “F” 

were the peaks from the force-control portion of Phas

peaks from the displacement-control portion.

a. Unstressed strand strain for positive moment peaks

b. Dowel bar strain for positive moment peaks

Figure 4.18. Performance of unstressed strand 

The increase in slope in Figure 

portion of the load when the connection was subjected to large moments and displacements. 

it can be inferred that another positive moment transfer mechanism 
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built connection also contributed to the connection performance; 

provides these strain values for the same peak conditions as in Figure 4.18a. The labels by the p

indicate the corresponding load/displacement peak; the points labeled as “F” 

control portion of Phase III, whereas the points labeled as “D” were the 

control portion. 

 

Unstressed strand strain for positive moment peaks 

Dowel bar strain for positive moment peaks 

. Performance of unstressed strand and dowel bars in GUSC detail

Figure 4.18a at high moments shows that the strands carried a greater 

on of the load when the connection was subjected to large moments and displacements. 

another positive moment transfer mechanism was contributing significantly in the 

built connection also contributed to the connection performance; Figure 4.18b 

The labels by the points on 

indicate the corresponding load/displacement peak; the points labeled as “F” 

e III, whereas the points labeled as “D” were the 

 

 

in GUSC detail 

a at high moments shows that the strands carried a greater 

on of the load when the connection was subjected to large moments and displacements. Therefore, 

contributing significantly in the 
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lower load portions of the test, but as the moment incr

more to resist the required demand. The other 

contribute to resisting positive moment tension 

and the general confinement and restraint provided by the diaphragm concrete

insight into the dowel bar and diaphragm mechanism. These plots show the measured st

lower and middle dowel bars at peak displacements producing positive moment in the connection. The 

dowel bar strains here exhibit a similar trend to the strand strain presented above. The data indicates 

that the dowel bars and unstressed strand a

combined mechanism picks up more load under high displacements as the ability of the concrete to 

provide confinement and anchorage lessens.

Figure 4.19 presents the strand strain as a function of the relative displacement measured at the 

lower interface of the girder and diaphragm. The linear behavior of the strand strain here indicates two 

important behaviors. First, the strand strain is directly related to the gap opening (relative interface 

displacement); thus, the strand is a primary contributor in the performance of the connection. The 

strand provides a successful tension load path to significantly improve th

performance of the connection detail and maintain a linear tendency in the separation of the girder 

from the cap beam and diaphragm. Second, these data confirm the successful anchorage of the strand 

in the girder and cap beam, since the r

irregularity in the relationship between the strand strain and location. Any slipping occurring in the 

anchorage regions of the strands would affect the relationship at the interface, so these d

strand load cell data mentioned earlier in confirming the successful anchorage of the strand.

Figure 4.19. Strand strain related to relative interface displacement
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lower load portions of the test, but as the moment increased the strand was required to contribute 

more to resist the required demand. The other primary mechanisms in the GUSC detail that 

resisting positive moment tension were shear friction between the diaphragm concrete 

nfinement and restraint provided by the diaphragm concrete. Figure 

insight into the dowel bar and diaphragm mechanism. These plots show the measured st

dowel bars at peak displacements producing positive moment in the connection. The 

dowel bar strains here exhibit a similar trend to the strand strain presented above. The data indicates 

that the dowel bars and unstressed strand act in concert to resist positive moment tension, and this 

combined mechanism picks up more load under high displacements as the ability of the concrete to 

provide confinement and anchorage lessens. 

presents the strand strain as a function of the relative displacement measured at the 

lower interface of the girder and diaphragm. The linear behavior of the strand strain here indicates two 

irst, the strand strain is directly related to the gap opening (relative interface 

displacement); thus, the strand is a primary contributor in the performance of the connection. The 

strand provides a successful tension load path to significantly improve the positive moment 

performance of the connection detail and maintain a linear tendency in the separation of the girder 

from the cap beam and diaphragm. Second, these data confirm the successful anchorage of the strand 

in the girder and cap beam, since the relative displacement of the connection shows no indication of 

irregularity in the relationship between the strand strain and location. Any slipping occurring in the 

anchorage regions of the strands would affect the relationship at the interface, so these d

strand load cell data mentioned earlier in confirming the successful anchorage of the strand.

 

. Strand strain related to relative interface displacement

eased the strand was required to contribute 

in the GUSC detail that could 

diaphragm concrete 

Figure 4.18b offers 

insight into the dowel bar and diaphragm mechanism. These plots show the measured strains in the 

dowel bars at peak displacements producing positive moment in the connection. The 

dowel bar strains here exhibit a similar trend to the strand strain presented above. The data indicates 

ct in concert to resist positive moment tension, and this 

combined mechanism picks up more load under high displacements as the ability of the concrete to 

presents the strand strain as a function of the relative displacement measured at the 

lower interface of the girder and diaphragm. The linear behavior of the strand strain here indicates two 

irst, the strand strain is directly related to the gap opening (relative interface 

displacement); thus, the strand is a primary contributor in the performance of the connection. The 

e positive moment 

performance of the connection detail and maintain a linear tendency in the separation of the girder 

from the cap beam and diaphragm. Second, these data confirm the successful anchorage of the strand 

elative displacement of the connection shows no indication of 

irregularity in the relationship between the strand strain and location. Any slipping occurring in the 

anchorage regions of the strands would affect the relationship at the interface, so these data match the 

strand load cell data mentioned earlier in confirming the successful anchorage of the strand. 

. Strand strain related to relative interface displacement 
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4.5.5. Performance of the LUSC detail

Because of the complexity of the positive moment tension transfer mechanism in the LUSC detail, 

data from the dowel bars, diaphragm looped strands, and girder looped strands were investigated and 

compared to quantify the connection performance. 

four dowel bars near the girder web plotted as a function of the relative displacement of the girder 

lower flange and the diaphragm. The positive relative displacements correspond with positive moment 

loading and are of primary interest. These data reveal a regular and linear trend throughout the Phase III 

test. The uniformity of this relationship suggests that the dowel bars 

the positive moment performance of the LUSC detail. Another notable observation is that the maximum 

strain of 1783 µε measured in the dowel bars was noticeably lower than the approximate yield strain of 

2300 µε. The relatively low strain demand indicates that the dowel bar size (#6 bars in the test unit) 

could be reduced without affecting the connection performance; however, additional investigation 

would be helpful prior to developing a specific design recommendation.

Figure 4.20. LUSC dowel bar strain as a function of interface relative displacement

Confinement for the dowel bars was expected to be provided by the looped strands

diaphragm and girder. Figure 4.21a

presents the diaphragm looped strand 

strain. This relationship is again relatively
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detail 

Because of the complexity of the positive moment tension transfer mechanism in the LUSC detail, 

data from the dowel bars, diaphragm looped strands, and girder looped strands were investigated and 

compared to quantify the connection performance. Figure 4.20 shows measured strain in one of the 

four dowel bars near the girder web plotted as a function of the relative displacement of the girder 

iaphragm. The positive relative displacements correspond with positive moment 

loading and are of primary interest. These data reveal a regular and linear trend throughout the Phase III 

test. The uniformity of this relationship suggests that the dowel bars are indeed a primary contributor in 

the positive moment performance of the LUSC detail. Another notable observation is that the maximum 

measured in the dowel bars was noticeably lower than the approximate yield strain of 

tively low strain demand indicates that the dowel bar size (#6 bars in the test unit) 

ting the connection performance; however, additional investigation 

would be helpful prior to developing a specific design recommendation. 

. LUSC dowel bar strain as a function of interface relative displacement

Confinement for the dowel bars was expected to be provided by the looped strands

a shows how this mechanism performed in the diaphragm

looped strand strain at peak displacements as a function of the dowel bar 

relatively linear throughout the test. The regularity of this relationship 

Because of the complexity of the positive moment tension transfer mechanism in the LUSC detail, 

data from the dowel bars, diaphragm looped strands, and girder looped strands were investigated and 

shows measured strain in one of the 

four dowel bars near the girder web plotted as a function of the relative displacement of the girder 

iaphragm. The positive relative displacements correspond with positive moment 

loading and are of primary interest. These data reveal a regular and linear trend throughout the Phase III 

are indeed a primary contributor in 

the positive moment performance of the LUSC detail. Another notable observation is that the maximum 

measured in the dowel bars was noticeably lower than the approximate yield strain of 

tively low strain demand indicates that the dowel bar size (#6 bars in the test unit) 

ting the connection performance; however, additional investigation 

 

. LUSC dowel bar strain as a function of interface relative displacement 

Confinement for the dowel bars was expected to be provided by the looped strands in the 

in the diaphragm; this figure 

strain at peak displacements as a function of the dowel bar 

. The regularity of this relationship 
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suggests that the diaphragm loops were an important component in the successful positi

behavior of the connection detail. 

strain and dowel bar strain throughout the test, plotted in 

relationship between the two. While there is relaxation in the strain as the load reverses, the pattern is 

quite uniform throughout the test and indicates regular interaction between the looped strand

dowel bars. 

 

 a. Peak positive moment displacements

Figure 4.21. LUSC looped strand strain as a function of dowel bar strain

One more observation from Figure 

around 4300 µε, significantly lower than the strand yield strain of 7900 

design concept, the looped strand c

performance. 

The interaction of the dowel bars with the 

positive moment connection performance. 

girder looped strand plotted as a function of dowel bar strain. This figure is striking

4.21a, indicating the girder strands were similarly engaged in the force transfer and also similarly 

equipped to perform as intended. 

regular relationship between the girder looped strand and the dowel bar

the girder loops to the diaphragm loops was the strain magnitudes, as 
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loops were an important component in the successful positi

behavior of the connection detail. The strain history of the relationship between the looped strand 

strain and dowel bar strain throughout the test, plotted in Figure 4.21b, also confirms the regular 

relationship between the two. While there is relaxation in the strain as the load reverses, the pattern is 

quite uniform throughout the test and indicates regular interaction between the looped strand

 

a. Peak positive moment displacements b. Strain history

. LUSC looped strand strain as a function of dowel bar strain

Figure 4.21 is that the maximum diaphragm looped strand strain was 

significantly lower than the strand yield strain of 7900 µε. In a detail based on this 

design concept, the looped strand could likely be reduced without compromising the connection 

The interaction of the dowel bars with the girder looped strands was also crucial to successful 

positive moment connection performance. Figure 4.22a shows the strain at peak displacements in the 

girder looped strand plotted as a function of dowel bar strain. This figure is strikingly

, indicating the girder strands were similarly engaged in the force transfer and also similarly 

equipped to perform as intended. Likewise, Figure 4.22b is very similar to Figure 

regular relationship between the girder looped strand and the dowel bar strain. The final s

the girder loops to the diaphragm loops was the strain magnitudes, as the maximum girder strand strain 

loops were an important component in the successful positive moment 

The strain history of the relationship between the looped strand 

b, also confirms the regular 

relationship between the two. While there is relaxation in the strain as the load reverses, the pattern is 

quite uniform throughout the test and indicates regular interaction between the looped strands and the 

 

b. Strain history 

. LUSC looped strand strain as a function of dowel bar strain 

is that the maximum diaphragm looped strand strain was 

. In a detail based on this 

ould likely be reduced without compromising the connection 

looped strands was also crucial to successful 

shows the strain at peak displacements in the 

ly similar to Figure 

, indicating the girder strands were similarly engaged in the force transfer and also similarly 

Figure 4.21a, verifying a 

strain. The final similarity of 

the maximum girder strand strain 
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is noticeably lower than the yield strain.

be reduced without significantly altering the performance of the connection.

 

 a. Peak positive moment displacements

Figure 4.22. LUSC girder looped strain as a function of dowel bar strain

4.6. 

4.6.1. GUSC Detail 

The primary design question to be addressed in the GUSC detail is how to size the unstressed 

strands to be sufficient for the tension demand that will occur under maximum positive moment 

loading. As discussed in Section 4.5.4

together to provide positive moment tension continuity; as the strand strain incre

strain also increase in a relatively linear manner. Therefore, a suggested design approach is to use the 

tension capacity of the strand as a starting point, since this capacity is simple to determine based on the 

strand strength and cross-sectional area. 

positive moment resistance of the strand can be determined. Then the positive moment resistance 

contribution from the dowel bars can be determined using the strand moment cap

appropriate factor. The total positive moment capacity can then be compared to t

expected positive moment demand in the connection, based on 

vertical acceleration effects. 
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bly lower than the yield strain. Similar to the diaphragm loops, these loop strands could likely 

significantly altering the performance of the connection. 

 

a. Peak positive moment displacements b. Strain history

. LUSC girder looped strain as a function of dowel bar strain

 Preliminary design recommendations 

The primary design question to be addressed in the GUSC detail is how to size the unstressed 

strands to be sufficient for the tension demand that will occur under maximum positive moment 

4.5.4, data revealed that the unstressed strands and dowel bars worked 

tive moment tension continuity; as the strand strain increased, the dowel bar 

strain also increase in a relatively linear manner. Therefore, a suggested design approach is to use the 

tension capacity of the strand as a starting point, since this capacity is simple to determine based on the 

sectional area. Once the strand tension capacity is determined, the correlated 

positive moment resistance of the strand can be determined. Then the positive moment resistance 

contribution from the dowel bars can be determined using the strand moment capacity along with an 

appropriate factor. The total positive moment capacity can then be compared to t

expected positive moment demand in the connection, based on column overstrength moment and 

strands could likely 

 

b. Strain history 

. LUSC girder looped strain as a function of dowel bar strain 

The primary design question to be addressed in the GUSC detail is how to size the unstressed 

strands to be sufficient for the tension demand that will occur under maximum positive moment 

, data revealed that the unstressed strands and dowel bars worked 

ased, the dowel bar 

strain also increase in a relatively linear manner. Therefore, a suggested design approach is to use the 

tension capacity of the strand as a starting point, since this capacity is simple to determine based on the 

Once the strand tension capacity is determined, the correlated 

positive moment resistance of the strand can be determined. Then the positive moment resistance 

acity along with an 

appropriate factor. The total positive moment capacity can then be compared to the maximum 

column overstrength moment and 
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For the test unit GUSC detail, four 3/8 in. diameter 7-wire strands were used (Astrand = 0.085 in
2
), 

with Fut = 270 ksi. Assuming a moment lever-arm distance of 33 in. (approximated as the distance from 

the center of the bridge deck to the center of the strands) the moment capacity of the four GUSC 

strands can be estimated to be 252 kip-ft. The maximum positive moment demand generated in the 

GUSC detail was 436 kip-ft; therefore, an additional moment capacity of 184 kip-ft was produced in the 

combined strand and dowel mechanism. Based on these numbers, the combined strand and dowel 

mechanism provided a positive moment resistance approximately 1.7 times greater than the positive 

moment capacity of the strands alone. If this factor is incorporated into the design recommendation for 

the strand, the strand moment capacity can be calculated as: 

 Mstrand = 1.7 N Astrand (0.8 Fut) js (Eq. 4.2) 

where N is the number of unstressed strands that provide continuity between the girder bottom flange 

and the cap beam, Astrand is the cross-sectional area of a single strand, Fut is the tensile strength of the 

strand, and js is the moment-arm distance of the strand mechanism which can be approximated as the 

distance between the center of the strands and the center of the bridge deck. This approach assumes 

that the dowel bars are sized sufficiently to remain intact and contribute to the positive moment tension 

mechanism. Additional investigation would be beneficial in confirming this recommended design 

approach and further quantifying the contribution of the dowel bars in the positive moment 

performance of the connection. 

4.6.2. LUSC Detail 

For the LUSC detail, examination of the experimental results indicated that the dowel bars, 

diaphragm looped strands, and girder looped strands all played a significant role in providing positive 

moment capacity. In addition, the diaphragm and girder looped strand demand was observed to be 

directly related to dowel bar demand. Thus, a suggested design approach is to size the dowel bars 

sufficiently using a shear friction approach that considers the tendency of the girder bottom flange and 

dowel bars to pull away from the cap and diaphragm when the connection is subjected to positive 

moment. Since the looped strands in both the girder and diaphragm act primarily as confinement 

mechanisms in restraining the dowel bars, these strands can then be sized based on the dowel bar 

design. 



www.manaraa.com

105 

 

 

For the test unit LUSC detail, four #19 (metric) dowel bars were chosen based on past experience 

and recommendations. The test data revealed that the strain in these dowel bars remained well below 

yield for the entirety of the test. If an appropriate shear friction approach had been used in sizing the 

dowel bars, they may have been able to be sized more efficiently. The looped strands in the test unit 

LUSC detail were sized to provide a force ratio of approximately 1.0 between the strand and the dowel 

bars using the following relationship: 

 F.R. = 1.0 = [Nls Als Futls] / [Ndb Adb Fydb] (Eq. 4.3)  

where F.R. is the force ratio, Nls and Ndb are the number of looped strands per side and dowel bars, 

respectively, Als and Adb are the cross-sectional areas of single looped strands and dowel bars, 

respectively, Futls is the tensile strength of the looped strands, and Fydb is the yield strength of the dowel  

bars. Since the strain magnitudes in the looped strands in the LUSC detail were observed to be below 

yield by a fractional value similar to the dowel bar reserve capacity, the test results indicate that the 

force ratio of 1.0 is appropriate. However, further investigation into using shear friction to size the 

dowel bars and the force ratio to size the strand is recommended to validate this preliminary proposed 

design approach. 

4.7. Conclusions 

The previous system test confirmed the validity of the inverted-tee cap beam and dapped-end I-

girder system for seismic regions. The subsequent connection test, detailed here, has allowed further 

development and quantification of two particular girder-to-cap connection details for this system. One 

connection detail, the grouted unstressed strand connection (GUSC), utilizes unstressed strand to 

improve the positive moment tension continuity between the girder and cap beam. The second detail, 

the looped unstressed strand connection (LUSC), utilizes dowel bars that are confined by looped strands 

to provide a similar improvement in positive moment tension continuity between the girder and the cap 

beam. The following list provides specific conclusions that have been made as a result of this connection 

investigation: 

1. The GUSC detail provides sufficient moment and shear resistance for integral bridge designs in 

high seismic regions. The detail remained elastic for negative moment demand as high as 3.6 
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times the maximum expected gravity and horizontal seismic demand and for positive moment 

demand as much as 4 times the maximum expected gravity and horizontal seismic demand. 

2. The LUSC detail also provides sufficient moment and shear resistance for integral bridge designs 

in high seismic regions. Its negative and positive moment resistance was determined to be 4 

times as high and 4.5 times as high, respectively, of expected negative and positive moment 

demands due to gravity and maximum horizontal seismic demand. 

3. Both details were sufficient for simulated gravity and seismic loads that included significant 

vertical acceleration contribution. Both connections were subjected to demands that included 

simulated vertical acceleration in excess of 1.25-g before exhibiting any inelastic tendencies. 

4. The successful performance of both details when subjected to vertical acceleration effects 

confirms that the Caltrans SDC requirement of including additional girder side mild 

reinforcement is unnecessarily conservative for these details. While this requirement is intended 

to guarantee sufficient shear connection performance when the connection is subjected to 

vertical acceleration demands, both connections demonstrated shear capacities considerably 

higher than the vertical acceleration demands without the inclusion of the additional mild steel. 

5. The use of grouted, unstressed strand is a viable way to transfer the positive moment tension in 

the connection region. The GUSC detail utilized strand that was terminated 3.05 m (10 ft) from 

the girder-to-cap connection [6.1 m (20 ft) at prototype scale] and anchored in place using high-

strength grout pumped into the strand ducts. The eventual failure mechanism of the detail was 

the fracture of the strand at the girder-to-cap interface, verifying that the grout provided 

sufficient anchorage to fully develop the strength of the strand. 

6. In the GUSC detail, the dowel bars that are similar to the existing Caltrans detail act with the 

unstressed strand in the girder lower flange; each mechanism resists a portion of the connection 

moment. Preliminary findings from this test indicate that the combined dowel bar and strand 

mechanism increases the positive moment resistance by about 1.7 over what would be 

expected in the strand mechanism alone. Proposed design recommendations for the GUSC 

detail should take the combined dowel bar and strand mechanism into account, but additional 

investigation would be helpful to further quantify the performance of this mechanism and 

develop final design recommendations. 

7. In the LUSC detail, the interaction between the dowel bars in flexure and the looped strands in 

confinement tension provides a viable positive moment tension transfer mechanism. A shear 
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friction model considering the positive moment tension in the dowel bar region can be used to 

size the dowel bars. Subsequently, a force ratio of 1.0 between the dowel bar capacity and 

looped strand capacity can be used to size the looped strand. Further investigation is 

recommended to more fully quantify the dowel bar and looped strand behavior and finalize the 

design recommendations for this detail. 
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CHAPTER 5. GIRDER LOAD DISTRIBUTION FOR SEISMIC DESIGN OF INTEGRAL BRIDGES 

A paper published in the ASCE Journal of Bridge Engineering 
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2
 

5.1. Abstract 

Current seismic design practice related to integral bridge girder-to-cap beam connections allows 

little or no lateral seismic load to be distributed beyond the girders immediately adjacent to the column. 

However, distribution results from several large-scale tests have shown that the distribution of column 

seismic moment typically engages all the girders. An approach utilizing simple stiffness models to predict 

distribution in integral bridge structures is presented in detail; distribution predictions based on grillage 

analyses are also compared. The experimental results and the analytical results from the stiffness and 

grillage models show that current design methods related to vertical load distribution are sufficiently 

accurate. However, when applied to the distribution of lateral load, similarly-obtained results reveal that 

current design practice does not appropriately account for the amount of load that is distributed beyond 

the girders adjacent to the column to the non-adjacent girders. The current practice leads to excessive 

girder-to-cap connection reinforcement, increased girder depth, unnecessarily high seismic mass, and 

increased construction cost. Finally, this paper makes recommendations for more appropriate 

distribution of seismic lateral load in integral bridge superstructures. 

5.2. Introduction 

Integral bridges have several advantages over non-integral configurations. These advantages, which 

have been well-documented in recent years (Snyder et al. 2011, Maruri and Petro 2005, Wassef et al. 

2004), have led to increased implementation of integral configurations, but design recommendations for 

such structures continue to be limited in some critical areas. The distribution of lateral load between 

girders in the superstructure is a particular aspect of integral bridge design that has not been addressed 
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adequately. Common bridge design recommendations such as the AASHTO standards (AASHTO 2010; 

AASHTO 2009) provide very little information on the distribution of lateral seismic loads. Common 

standards used in seismic regions, such as Seismic Design Criteria (SDC, 2006) and Bridge Design Aids 

(BDA, 1995) from the California Department of Transportation (Caltrans) also do not provide a detailed 

approach for seismic lateral load distribution. 

Investigations over the past fifteen years have explored seismic lateral load distribution in the 

superstructure of integral bridge systems. Holombo et al. (2000) briefly looked at lateral load 

distribution alongside other issues of interest related to use of precast concrete superstructures in 

seismic regions. National Cooperative Highway Research Program (NCHRP) Project 12-54 (Wassef et al. 

2004, Sritharan et al. 2005, Vander Werff 2002) investigated lateral load distribution as part of a 

research effort examining seismic issues in bridges with steel superstructures and concrete 

substructures. These projects and others have mentioned the issues related to seismic lateral load 

distribution based on experimental data. However, the authors are not aware of any studies that 

systematically investigate seismic lateral load distribution using comparisons of experimental test data 

and predictive analytical models to formulate improved design recommendations. 

The investigations mentioned above primarily focused on the performance and sufficiency of bridge 

systems for high seismic regions. The studies utilized the construction and testing of large-scale 

experimental models of prototype integral bridge structures. The first test unit modeled a bridge with a 

4-girder prestressed concrete superstructure (Holombo et al. 2000), using precast bulb-tee girders. This 

test unit is referred to as the precast bulb-tee (PBT) model. The next two test units were based on 

bridges with 4-girder steel superstructures (Wassef et al. 2004). These units are referred to as the steel 

pier cap (i.e., SPC1 and SPC2) models. A more recent study by Caltrans investigated a test unit consisting 

of a 5-girder prestressed concrete superstructure (Snyder et al. 2011) including an inverted-tee bent 

cap. This unit is referred to as the inverted-tee bent cap (ITB) model. Figure 5.1 provides schematic 

details of the prototype structures for these investigations. All of the tests had specific areas of focus; 

however, common areas of interest can be summarized as: (1) the design of a prototype bridge utilizing 

integral connection details capable of withstanding seismic loading, (2) the experimental validation of 

these details using large-scale test specimens, and (3) the formation of suitable seismic design 

recommendations based on the analytical and experimental findings. This paper compiles the load 
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distribution results from these experimental tests and compares them with predictions from grillage and 

simple stiffness models. 

 

Figure 5.1. Prototype structures used for the integral bridge investigations 
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5.3. Current Design Practice 

The current AASHTO LRFD Bridge Design Specifications (2010) includes a well-established procedure 

for using distribution factors to distribute moment and shear due to vertical loads to interior and 

exterior girders with concrete decks (Section 4.6.2.2.2). The distribution factors are based on the 

spacing, span, and longitudinal stiffness of the beams and the depth of the slab. The distribution factor 

approach has been shown to be reliable for vertical live load by many studies (Zokaie et al. 1991, Kim 

and Nowak 1997, Mabsout et al. 1999, Barr et al. 2001, and Cai 2005, for example). Recent work as part 

of NCHRP Project 12-26 has continued with this approach while simplifying the equations (Mertz 2007). 

Caltrans’ current approach to vertical live load distribution incorporates the recommendations from 

AASHTO. While slight variations are made for special situations (see “Concrete box girder live load 

distribution by Lanell for special loads” 1998, or California Amendments to AASHTO LRFD Bridge Design 

Specifications 2011, for example), the basis of the approach continues to be spacing, span, and section 

properties of the girders and deck. This approach is appropriate for distributing service-level live loads. 

However, it is not analogous to the vertical load distribution that occurs when the bridge structure is 

exercised by large displacements and experiences considerable cracking due to a large seismic event. 

Also, the AASHTO distribution factors are primarily intended for girder design. However, a primary focus 

of seismic load distribution, particularly in conjunction with the ever-increasing use of segmental 

construction and accelerated bridge construction, is the design of the connections. Therefore, a 

stiffness-based approach to vertical load distribution during large seismic displacements is introduced 

later in this paper. This approach is primarily intended for use in conjunction with a similar lateral load 

distribution model in determining seismic load paths through the superstructure. 

Regarding lateral load distribution, Section 4.11.2 in the AASHTO Guide Specifications for LRFD 

Seismic Bridge Design (2009) stipulates the superstructure components and their connections “shall be 

designed to resist overstrength moments and shears of ductile columns.” Section 8.10 in these 

guidelines goes on to address the capacity design of the superstructure for integral bent caps in 

reinforced concrete structures. These guidelines limit the distribution of the column overstrength 

moment to an effective width equal to the sum of the diameter of the column and the depth of the 

superstructure. This stipulation is graphically summarized in Figure 5.2. The practical conclusion of this 

requirement is that the column overstrength moment can rarely, if ever, be distributed to the exterior 
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girders in a system utilizing a single-column bent. The AASHTO guidelines do not allow the distribution 

of any portion of the column overstrength moment to the exterior girders for any of the four prototype 

structures considered in this study. 

 

Figure 5.2. Distribution of column overstrength moment to girders (plan) 

Focusing on Caltrans’ approach to lateral load distribution, Chapter 5 of Caltrans’ BDA (1995) offers 

no information in the BDA related to lateral load distribution. Section 7.2 in Caltrans’ SDC follows the 

AASHTO recommendations for lateral distribution, while additionally recommending “the effective 

superstructure width can be increased at a 45
o
 angle [in plan] as [the distance increases] from the bent 

cap until the full section becomes effective.” This modification is shown in Figure 5.2. This stipulation 

does not allow the distribution of the lateral load to the exterior girders at the cap-to-girder connection 

for all the prototype structures considered in this study and all similar integral bridge configurations. 

However, lateral load distribution would be permitted in regions where the longitudinal distance from 

the cap beam exceeds the girder spacing, identified in Figure 5.2 as dg. 
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5.4. Analytical Approaches 

Detailed analytical models of integral bridge superstructures such as those incorporating a finite 

element analysis (FEA) can be helpful in understanding load distribution between girders. The bridge 

superstructure, including girders and cap beam, can be modeled using FEA, and the model can be used 

to investigate load paths of both vertical load and horizontal seismic effects using the column 

overstrength moment (applied as a torsional load in the cap beam) through the superstructure. While a 

FEA can provide helpful results, they are typically cumbersome and time-consuming. A slightly simpler 

approach is to utilize a grillage model analysis (GMA). A GMA approach utilizes line elements for girder 

and cap beam elements, simplifying the modeling process while still providing opportunity to investigate 

the load paths through the superstructure. A third analysis approach uses member-stiffness-based 

calculations to approximate the distribution of gravity and seismic loads; this model is referred to as a 

simple stiffness model (SSM). The following sections provide an in-depth look at the analytical models 

used in this load distribution investigation. 

5.4.1. SSM Background 

The difference in load direction between vertical and horizontal loads produces differences in load 

transfer through a bridge superstructure. Vertical loads moving through the superstructure into the 

column will be transferred as flexural loads in both the girders and the cap beam. However, the column 

overstrength moment resulting from seismic lateral loads will produce both torsional and flexural 

actions in portions of the superstructure. These actions will include torsional loads in the cap beam, 

positive flexural loads in the girders on one side of the cap beam, and negative flexural loads in the 

girders on the opposing side of the cap beam. To account for these stiffness differences, two different 

SSMs are used for a given prototype structure. The first SSM for each structure is used to determine the 

distribution of the vertical load among the girders in the superstructure. The second SSM for each 

structure is used to investigate the distribution of the column overstrength moment. While the actual 

distribution is a combination of both actions, the vertical and lateral distribution behavior is separated 

to simplify the analysis. 

5.4.2. SSM for Vertical Load 

Figure 5.3a provides a schematic diagram of the vertical load distribution concept. This concept is 

used to analyze how the self-weight of the bridge transfers from the superstructure into the column, or 
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vice versa, as a way to isolate this load behavior from the lateral load transfer occurring from large 

seismic accelerations. As such, the vertical load SSM presented here is not analogous to the commonly-

used AAHSTO live load distribution factors for vertical load discussed earlier. The SSM is developed by 

estimating the appropriate stiffness of each of the individual elements, assuming rigid connections 

between the girder and cap, and developing an overall load distribution model. Because typical bridge 

superstructures tend to be symmetrical, calculating the stiffness for only half of each specimen is usually 

appropriate, as long as a suitable boundary condition is incorporated at the specimen centerline as 

shown in Figure 5.3b. 

 

Figure 5.3. Vertical load distribution schematics 
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The stiffness terms kiv and kev, for the interior and exterior girders, respectively, are defined as the 

magnitudes of flexural stiffness for the composite girder-deck sections, modeled as beams that are 

simply supported with concentrated vertical loads applied at their midspans, as shown in Figure 5.3c. 

Thus, using principles of basic mechanics, kiv and kev can be determined using: 

 k = 48EgIg / Lg
3
 (Eq. 5.1) 

where Eg is the modulus of elasticity of the girder material, Ig is the effective girder moment of inertia of 

either the interior or exterior girder, and Lg is the girder span length. Ig is based on the composite section 

of the girder and bridge deck, using cracked and uncracked concrete properties as appropriate. The 

resulting values of kiv and kev will likely not be equal because of the difference in tributary deck areas for 

the interior and exterior girders. 

The cap beam flexural stiffness, kcv, is determined by modeling the cap beam as a fixed-end 

cantilever beam with a concentrated vertical load applied at the free end as shown in Figure 5.3d, where 

the cantilever beam represents the portion of the cap beam between the interior girder and exterior 

girder. The relationship for kcv is: 

 kcv = 3EIc / Lce (Eq. 5.2) 

where Ec is the modulus of elasticity of the cap beam material, Ic is the effective moment of inertia of 

the cap beam, and Lce is the length of the cap beam between the interior girder and the exterior girder. 

An appropriate combined stiffness relationship can be developed by observing that, for a given 

configuration, the combined behavior of the various structural members will contribute to the 

resistance of a load in a manner either simultaneously parallel or sequentially in series with other 

individual member stiffness components. For example, referencing Figure 5.3b, the load P, which is 

translated by the rigid center link, will be resisted in parallel by the flexural stiffness of the cap beam 

(kcv) and the flexural stiffness of Girder A (kiv), but the contribution of kcv from the cap beam will occur in 

series with the contribution from the flexural stiffness of Girder B (kev). The total stiffness of two 

components resisting a load in parallel is found by simply summing the two stiffness values. The total 

stiffness of two components resisting a load in series is found by dividing the product of the stiffness 
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values by the sum of the stiffness values. Therefore, the equivalent stiffness, kvert, for the scenario 

represented in Figure 5.3b is given by: 

 kvert = (kevkcv) / (kev + kcv) + kiv (Eq. 5.3) 

using the stiffness terms defined in Eqs. 5.1 and 5.2. The combined behavior of the external portion of 

the cap beam and the exterior girder, excluding the contribution of the interior girder, can be 

represented as: 

 kev+cv = (kevkcv) / (kev + kcv) (Eq. 5.4) 

To determine the load distribution among the girders, the fractional relationships of appropriate 

stiffness terms are used to determine the fractional load expected in a particular girder. For example, for 

a symmetrical four-girder integral structure with stiffness terms determined as described above, the 

vertical load will be carried through two load paths (one through the interior girder and one through the 

cap beam and exterior girder). Therefore, the fractional load distribution to the interior girder is: 

 DFint = kvert / (kvert + kev+cv) (Eq. 5.5) 

and the fractional load distribution to the exterior girder is: 

 DFext = kev+cv / (kvert + kev+cv) = 1 – DFint (Eq. 5.6) 

The accuracy of this approach depends on the appropriateness of the individual stiffness values 

used. Much work has been completed related to appropriate section properties to use for reinforced 

concrete sections, and some of this work has been devoted specifically to the behavior of reinforced 

concrete under seismic loading (see especially Priestley et al. 1996). In this study, since seismic behavior 

is of primary importance, composite section properties were determined assuming cracked concrete 

properties. Accordingly, the contribution of concrete on the tension side of the neutral axis was 

neglected in the determination of flexural section properties, following Priestley’s approach. 
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5.4.3. SSM for Lateral Load 

The SSM for lateral load distribution can be used to determine the distribution of the column 

overstrength moment through the superstructure. A schematic of the horizontal load distribution 

concept is shown in Figure 5.4a. Symmetry again typically allows a half-model, as shown in Figure 5.4b. 

The column overstrength moment is represented here as a torsional load in the cap beam. The 

applicable stiffness values are kit and ket (interior and exterior girder flexural stiffness) and kct (cap beam 

torsional stiffness). The girder stiffness values are determined by the girder flexural behavior as shown 

in Figure 5.4c. Cracked and uncracked concrete properties are of particular interest in these stiffness 

values, since the bridge deck is in tension on one side of the cap beam and compression on the other 

side. Since the girders on each side of the cap beam act in parallel with each other, the girder stiffness 

values are: 

 k = 3EIgu / (Lg / 2) + 3EIgc / (Lg / 2) (Eq. 5.7) 

where Igu is the moment of inertia considering the deck concrete to be uncracked and Igc is the moment 

of inertia with cracked deck concrete. The torsional stiffness of the cap is determined based on the 

theoretical model shown in Figure 5.4d, resulting in: 

 kct = GJc / Lce (Eq. 5.8) 

where GJc represents the torsional rigidity of the cap beam. For the concrete cap beams in this study, 

the recommendation of Priestley et al. (1996) to use 0.05 J (where J is the polar moment of inertia) for 

cracked sections was used to determine Jc. 

The resulting total stiffness value for the typical lateral load configuration, klat, and stiffness value 

related to the cap and exterior girder contribution, ket+ct, are: 

 klat = (ketkct) / (ket + kct) + kit (Eq. 5.9) 

 ket+ct = (ketkct) / (ket + kct) (Eq. 5.10) 

and the lateral load distribution factors are: 
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 DFint = klat / (klat + ket+ct) (Eq. 5.11) 

 DFext = ket+ct / (klat + ket+ct) = 1 – DFint (Eq. 5.12) 

These distribution factors can be used to estimate the fractional load distribution of the column 

overstrength moment to the interior and exterior girders, respectively. 

 

Figure 5.4. Lateral load distribution schematics 
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5.4.4. Grillage and FEA Models 

Grillage model analyses (GMAs) were conducted for each of the experimental studies considered in 

this work. The results from these GMAs are used for comparison with the SSM approach and the 

experimental results from each test unit. 

model (Snyder et al. 2011). Member section properties for the line elements in this GMA are calculated 

using composite section properties, incorporating cracked or uncracked concrete properties similar to 

the approach described for the SSM calculations in the preceding section. Nonlinear springs are also 

incorporated in GMA, located in the plastic hinge regions of the reinforced concret

behavior is defined by using appropriate analytical methods to determine moment

the spring based on the predicted moment

(see Priestley et al. 1996, for example). Similar GMAs have been conducted for each of the test units 

used in this study. Information on the grillage model for the PBT study can be found in Holombo et al. 

(2000) and for the SPC study in Wassef et al. (2004).

Figure 

All the GMAs included the contributions of the slab and diaphragm members to provide limited 

transverse continuity between girders. The deck and diaphragm contribution is at times observed 

play a noticeable role in the load distribution among girders. The deck contribution in particular affects 

load distribution in the structures likely to experience degradation in the connections, since the 
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Figure 5.5. Grillage model for ITB test unit 
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All the GMAs included the contributions of the slab and diaphragm members to provide limited 

transverse continuity between girders. The deck and diaphragm contribution is at times observed to 

play a noticeable role in the load distribution among girders. The deck contribution in particular affects 

load distribution in the structures likely to experience degradation in the connections, since the 
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connection deterioration produces variation in stiffness among the girders. When a stiffness difference 

exists among the girders, the deck contribution appears to play a larger role in transferring load from 

girder to girder. In the ITB study, a detailed FEA model was also developed in parallel with the GMA. 

Detailed information on this FEA work can be found in Theimann (2009). The FEA analysis results are not 

identical to the GMA results, but they confirm that inclusion of deck and diaphragm elements can affect 

the lateral load distribution results. 

The stiffness-based SSM approach, described in the preceding section, is not well-suited to include 

the contribution of transverse elements such as deck and diaphragm. This limitation is a result of using 

stiffness values based on beam elements that are representative of individual, isolated girders. 

However, as will be seen in the results presented later, the SSM approach can still be a very serviceable 

option in predicting load distribution. 

5.5. Summary of Large-Scale Tests 

All the studies in this work included large-scale test units intended to examine and quantify system 

performance. All the test units modeled prototype structures utilizing an integral bent cap and a single 

reinforced concrete column. The prototype structures, presented earlier in Figure 5.1, were modeled 

experimentally to examine and quantify performance of the PBT, ITB, and SPC systems. Figure 5.6 shows 

the configuration for the ITB test unit. Detailed information on the test configuration and experimental 

results can be found in Holombo et al. (2000) for the PBT test, Sritharan et al. (2005) for the SPC tests, 

and Snyder et al. (2011) for the ITB test. 
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Figure 5.6. Test unit for ITB model 

5.5.1. PBT Test Unit 

The test unit for the PBT study was constructed as a 40-percent scale representation of a prototype 

bridge utilizing precast, prestressed concrete bulb-tee girders. The test unit modeled the prototype 

bridge from midspan to midspan of the two spans adjacent to the center bent. The test unit included 

the reinforced concrete column, the post-tensioned concrete cap beam, and portions of the girders 

extending across the cap beam to a scaled distance equivalent to the midspan of the prototype center 

spans. The load-displacement for the horizontal seismic loading is shown in Figure 5.7a. The test unit 

was observed to exhibit very good seismic behavior, retaining strength up to a lateral displacement 

ductility µ∆ = 8. 
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Figure 5.7. Horizontal load-displacement responses from experimental studies 

5.5.2. SPC Test Units 

Test units SPC1 and SPC2 were constructed for the NCHRP study. Both test units were similar, 

except SPC2 was designed and constructed with a reduced superstructure depth. The test units were 

built in an inverted configuration to simplify the laboratory setup and loading. These test units were 

one-third-scale representations of the region surrounding the center bent of a prototype bridge 

consisting of steel I-girders and a steel box-shaped cap beam. The test units included a reinforced-

concrete column, steel box beam pier cap, and steel girders extending to the midspan of the spans 

adjacent to the column. To account for the dead load in the inverted position, a vertical load was 

applied to the reinforced concrete column at its top (in the test orientation). 
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Figure 5.7b and Figure 5.7c provide the load-displacement hysteresis behavior for SPC1 and SPC2 

when subjected to simulated horizontal seismic loading. The test units were both observed to perform 

well. The superstructure in SPC1 exhibited elastic response throughout the duration of the test, and a 

plastic hinge was successfully formed in the column. The horizontal load test showed the structure to 

retain full strength up to target ductility, µ∆ = 4, and reduced strength with no stability failure up to 

ductility µ∆ = 6. Longitudinal bar buckling and subsequent fracture just below the cap beam was 

observed to be the primary failure mechanism. SPC2 also exhibited good overall seismic behavior. 

Stresses in the superstructure were observed to remain elastic throughout the horizontal test, and the 

structure also retained close to full strength up to ductility 4, with significant strength, although 

reduced, at ductility 6. The primary failure mechanism in SPC2 was the fracture of mechanical anchorage 

of the column longitudinal bars in the bridge deck near the cap beam. 

Both SPC1 and SPC2 were subjected to service-level loading prior to the seismic loading. In these 

service level tests, vertical load and horizontal load were applied separately. Data from these tests, 

including girder strains and girder reactions, have been used to compile the results presented in the 

distribution comparisons later in this paper. 

5.5.3. ITB Test Unit 

The half-scale test unit for the ITB study modeled a portion of the reinforced concrete column, the 

cast-in-place concrete cap beam, and the central portion of the five precast concrete I-shaped girders on 

both sides of the cap beam. Two different integral connection details between the girders and cap beam 

were utilized, one on one side of the cap beam and the other on the opposite side. The first detail 

implemented a design that has already been used by Caltrans, referred to as the “as-built” connection. 

The connection detail on the other side of the cap beam was similar but incorporated an unstressed 

post-tensioning tendon to provide continuity for the positive-moment tension reinforcement through 

the connection. The tendon passed through the bottom flange of the girder and the cap beam corbel 

and then terminated on the far side of the cap beam. This connection is referred to as the “improved” 

connection. Although data was gathered from both the as-built and improved details, the data used in 

the distribution analysis presented in this paper are from only the improved connection portion of the 

test unit. The as-built data has been omitted since the improved connection configuration is likely more 

representative of future bridges based on this concept. 
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Figure 5.7d shows the load-displacement hysteresis for the test unit when subjected to simulated 

horizontal seismic loading. The system was observed to perform very well. The superstructure provided 

sufficient strength to successfully form plastic hinges in the column, and the structure maintained 

strength up to displacement ductility µ∆ = 8 with only minor strength loss at ductility µ∆ = 10. The load-

displacement hysteresis and high displacement ductility attained by the test unit show that the girder-

to-cap connection performed well, remaining elastic while allowing full development of the column 

plastic hinges. 

5.6. Comparison of Analytical and Experimental Load Distributions 

5.6.1. Vertical Load 

Using the approach described in the “Analytical Approaches” section, SSMs have been developed for 

each of the test units to investigate the distribution of the moment in the girders due to the vertical 

load. In addition, results from GMAs of each of the test units also have been used to look at the 

distribution of moment due to vertical load. Finally, the experimental results from each of the test units, 

summarized above, have been incorporated to further validate the analytical models.  

Table 5.1 provides a compilation of the distribution of moment due to vertical load in the SPC and 

ITB test units, including experimental data, grillage model predictions, and SSM predictions. (The PBT 

test unit was not included in this comparison since corresponding experimental data was not available.) 

Also included in this table are the distribution ratios from AASHTO (2010), representing the current 

design recommendations. The design ratios included in this table are determined using the AASHTO 

specifications for live load distribution factors, even though these factors are not directly comparable to 

the results from the vertical SSM analysis as mentioned previously. 
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Table 5.1. Vertical load distribution comparison 

Parameters 
SPC 1 SPC 2 ITB 

Interior Exterior Interior Exterior Center Intermediate Exterior 

Experimental 

Ratio 
0.258 0.242 0.268 0.233 0.208 0.195 0.2 

Design Ratio 0.271 0.229 0.271 0.229 0.203 0.203 0.196 

Design 

Difference 
4.7% -5.0% 1.1% -1.3% -2.4% 4.1% -2.0% 

Grillage 

Ratio 
0.275 0.225 0.273 0.228 0.211 0.219 0.176 

Grillage 

Difference 
6.5% -6.9% 1.9% -2.2% 1.4% 12.3% -12.0% 

SSM Ratio 0.258 0.242 0.253 0.247 0.208 0.2 0.196 

SSM 

Difference 
0.0% 0.0% -5.4% 6.2% 0.0% 2.6% -2.0% 

 

The ratios for the experimental and analytical distributions reported in this table are determined on 

the basis of total load in all girders. Hence, for a five-girder structure, if each of the five girders would 

carry the same amount of load, the resulting ratio would be 0.20 for the center girder, 0.20 for each of 

the two intermediate girders, and 0.20 for each of the two exterior girders. The “difference” listed for 

each model in the table is the percentage difference between the analytical prediction and the 

experimental result. 

The predictions in Table 5.1 from the design recommendations for live load distribution, the grillage 

analyses, and the SSM analyses all compare favorably with the measured experimental results. This 

favorable comparison is notable, since the design recommendation values are actually intended for live 

load distribution rather than for vertical load transfer during seismic loading. The values determined by 

current design recommendations for live load distribution vary a maximum of 5% from the experimental 

values. The SSM predictions are similar, with a maximum difference of 6.2%. The largest discrepancy 

occurs in the grillage prediction for the ITB model, with a difference of approximately 12% in the 

predicted and experimental values for the intermediate and exterior girders. 

5.6.2. Horizontal Load 

For the lateral load SSMs, the approach presented in the “SSM for Lateral Load” section has been 

followed, except the model is altered slightly for the five-girder ITB structure. Because of the direct 
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connection of the column, center girder, and cap beam, the general SSM approach is found to 

overestimate the load distribution to the center girder. Therefore, the predicted distribution of the load 

to the center girder is determined by comparing only the girder stiffness values and not the overall 

system stiffness values (resulting in a distribution of 0.20 to the center girder). Once the center girder 

distribution is predicted in this way, the SSM as presented is used to predict the intermediate and 

exterior girder distributions. 

Results from the grillage model analyses of each of the test units have also been incorporated to 

predict the distribution of the lateral load moment. Experimental results from each of the test units are 

then compared to both the SSM and grillage analytical predictions along with the current design 

recommendations for lateral load distribution. Since none of the test units were subjected to horizontal-

load-only conditions, the horizontal-load-only experimental values have been determined by removing 

the vertical load contribution from the recorded strain or load data. This process has been accomplished 

by carefully identifying the zero-horizontal-load instances during each cycle of the horizontal load tests. 

The measured strains and displacements at these instances have been identified as vertical-load-only 

data. Subsequently, the vertical-load-only data has been found to be acceptably consistent throughout 

the lateral load test. Thus, for the portions of the test where lateral load was present, the vertical-load-

only data is used to bias the overall data and provide the horizontal-load-only data. 

Table 5.2 lists the experimental values, analytical predictions, and current design recommendations 

for seismic lateral load only. The reported experimental distribution values have been established at the 

first peak displacements by comparing the strain increase in each girder as the lateral load was 

increased from zero to the load corresponding to the target displacement during each displacement half 

cycle. 
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Table 5.2. Lateral load distribution comparison 

Parameters 
PBT SPC 1 SPC 2 ITB 

Interior Exterior Interior Exterior Interior Exterior Center Interm. Exterior 

Experimental 

Ratio 
0.334 0.166 0.333 0.167 0.350 0.150 0.205 0.239 0.158 

Design 

Ratio 
0.5 0 0.5 0 0.5 0 0.333 0.333 0 

Design 

Difference 
49.9% -100.0% 52.1% -100.0% 42.9% -100.0% 62.4% 39.3% -100.0% 

GMA 

Ratio 
0.344 0.156 0.360 0.140 0.349 0.151 0.228 0.212 0.174 

GMA 

Difference 
2.9% -6.4% 7.5% -19.3% -0.003% 0.01% 2.3% -12.7% 9.2% 

SSM 

Ratio 
0.305 0.195 0.369 0.131 0.353 0.147 0.200 0.239 0.158 

SSM 

Difference 
-9.5% 17.1% 9.8% -23.7% 0.01% -1.7% -2.4% 0% 0% 

 

As with the information in Table 5.1, the data in this table are reported on the basis of load ratio in 

each of the individual girders compared to the total load experienced in all girders. The first observation 

regarding these numbers is the striking dissimilarity of the design ratio numbers to the actual 

experimental values. Current design recommendations allow lateral load distribution among only the 

center and intermediate girders of the ITB structure, which is the only five-girder structure included in 

this investigation. However, an examination of the experimental data reveals that 15.8% of the lateral 

load was carried by each of the exterior girders, i.e., the two exterior girders together carried almost 

32% of the total lateral load moment. The strains used to determine these distributions were measured 

directly above the connection interface and at a location approximately 450 mm along the girder from 

the connection interface. Caltrans’ current recommendations would not allow distribution of the load to 

the exterior girders until reaching a distance of approximately 990 mm from the connection (the 

distance corresponding to dg in Figure 5.2 presented earlier). Hence, the measured distributions clearly 

show the distribution is happening sooner than the current recommended practice. 

The data from the four-girder structures (PBT, SPC 1, and SPC 2) reveal even less correlation with the 

current design recommendations. For these structures, current design guidelines allow no distribution 

of lateral load to the exterior girders in the connection region; however, the experimental results show 

that 30%, 33%, and 34% of the total lateral load moment is distributed to the exterior girders in the PBT, 
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SPC 1, and SPC 2 test units, respectively. The results indicate that current design recommendations are 

overly conservative in confining the lateral load only to the interior girders adjacent to the column. 

While the analytical predictions for each of the four structures considered have some discrepancy, 

the results from the SSMs and GMAs from all four of the structures compare better with the 

experimental results than the current design recommendations do. Looking at the GMAs, the maximum 

difference between the predicted ratios and the experimental ratios is 0.03, whereas the design 

recommendations consistently differ from the experimental ratios by 0.15 or more. The SSMs also 

provide much better comparisons to the experimental results than current design predictions, with a 

maximum ratio discrepancy of about 0.04. The experimental results validate the predictions of both the 

GMAs and SSMs, showing that large portions of the lateral load are indeed distributed beyond the 

girders immediately adjacent to the column. 

5.7. Lateral Load Distribution at Various Load Levels 

Data gathered from the SPC2 and ITB tests are helpful in investigating whether the lateral load 

distribution occurs consistently at low and high seismic load levels. Figure 5.8 shows the experimental 

load distribution for SPC2 for the peak conditions throughout the test, beginning at service load levels 

and continuing through several cycles of plastic deformation. The girder load distribution to the exterior 

girders is seen here to begin almost immediately, at the first recorded load level. The load level at this 

point of the test is only 0.25Fy, with Fy representing the lateral yield of the test unit. The exterior girders 

even at this early stage are carrying approximately 30 percent of the lateral load. Observed flexural 

cracking of the concrete across the entirety of the deck width prior to the 1.0Fy load level also indicates 

the engagement of all the girders in carrying the lateral load. The distribution to the exterior girders 

remains quite consistent throughout the duration of the load test. Thus, the SSM and GMA predictions 

for the superstructure are useful not only at high levels of seismic loading but also at service load levels. 
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Figure 5.

Figure 5.9 provides the load distributions at various load levels for the ITB test unit. These results 

show significant and relatively consistent distribution to all girders. The exterior girders are shown, at 

the very first peak load recorded, to individually carry

lateral load. These results concur with the results from SPC2. Although there is a bit of irregularity in the 

distribution for the low loads, likely related to initial cracking and softening, significant distr

observed at the early stages of loading followed by more uniform distribution for all of the higher peak 

conditions. 
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provides the load distributions at various load levels for the ITB test unit. These results 

show significant and relatively consistent distribution to all girders. The exterior girders are shown, at 

the very first peak load recorded, to individually carry 15 percent (30 percent combined) of the total 

lateral load. These results concur with the results from SPC2. Although there is a bit of irregularity in the 

distribution for the low loads, likely related to initial cracking and softening, significant distr

observed at the early stages of loading followed by more uniform distribution for all of the higher peak 
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a. Peak displacements during entire Phase I test

b. Peak displacements during low

Figure 5.9. Experimental load distribution for ITB test unit
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a. Peak displacements during entire Phase I test 

b. Peak displacements during low-load portion of Phase I test 

. Experimental load distribution for ITB test unit 
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5.8. Recommended Model for Lateral Load Distribution 

The work presented here shows the SSM is useful for predicting lateral load distribution for bridges 

with integral girder-to-cap connections. The SSM can provide a simple approach for determining more 

realistic lateral load distribution than the current design recommendations. Based on the SSM results 

presented previously, a suitable approach is to use the SSM prediction for all girders along with an 

appropriate variability margin. If α is introduced as a variability factor, and DFSSM is defined as the girder 

distribution factors determined from Eqs. 5.11 and 5.12 as appropriate, the recommended distribution 

factor, DFrecom, can be defined as: 

 DFrecom = α DFSSM (Eq. 5.13) 

The variability factor, α, is introduced to provide a safety margin since the simple model is not 

intended to be an exact representation of all the complexities of the real structure. Trial-and-error 

reveals that a value of 1.2 provides good results for the four structures in this study; similar studies 

could be used to further refine this variability factor. Using α = 1.2 and the interior fractional distribution 

values from Table 5.2 for each test unit, the recommended distributions for the interior girders in this 

study are 0.37, 0.44, 0.42, and 0.29, respectively, for the PBT, SPC1, SPC2, and ITB test units. The ratios 

of these recommended distributions to the measured experimental distributions range from 1.10 for the 

PTB test unit to 1.34 for the SPC1 test unit. The recommended distributions are shown graphically in 

Figure 5.10 (“Proposed”) along with the current AASHTO/Caltrans approach (“Current”) and compared 

with the experimental, GMA, and SSM predictions. Examining the data from the interior girders in the 

PBT test unit, the ratio of the current recommendation to the experimental distribution is 1.50. 

However, the ratio of the proposed recommendation to the experimental distribution is 1.10. Thus, 

when compared with current design recommendations, the SSM prediction for the PBT structure 

compares 40% more favorably with the experimental results. The improvements of the SSM model in 

distribution prediction for the SPC1, SPC2, and ITB structures are 17%, 22%, and 19%, respectively. 
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Figure 5.10. Distribution comparison for interior girder latera

This study focused on the development of simple stiffness models (SSMs) to predict seismic load 

distribution between girders in integral bridge superstructures. The conclusions drawn from this study 

are presented below: 

1. Current practice and recommendations related to vertical distribution of dead load and vehicle 

live load are appropriate. Under high seismic horizontal displacements, the experimental girder 

strain values due to vertical load increase, but the vertical load distribution be

remains relatively constant. Vertical load distributions determined using techniques such as the 

vertical simple stiffness model (SSM) and grillage model analysis (GMA) are shown to match well 

with current recommendations and experimental res

2. Current practice and recommendations limit the distribution of column seismic overstrength 

moment—expected under horizontal seismic action longitudinally along the bridge

girders in the superstructure immediately adjacent to the column. 

from large-scale tests confirm the girders that are not adjacent to the column consistently resist 

a significant amount of the column moment.
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. Distribution comparison for interior girder lateral load

5.9. Conclusions 

This study focused on the development of simple stiffness models (SSMs) to predict seismic load 

distribution between girders in integral bridge superstructures. The conclusions drawn from this study 

and recommendations related to vertical distribution of dead load and vehicle 

live load are appropriate. Under high seismic horizontal displacements, the experimental girder 

strain values due to vertical load increase, but the vertical load distribution between girders 

remains relatively constant. Vertical load distributions determined using techniques such as the 

vertical simple stiffness model (SSM) and grillage model analysis (GMA) are shown to match well 

with current recommendations and experimental results. 

Current practice and recommendations limit the distribution of column seismic overstrength 

expected under horizontal seismic action longitudinally along the bridge

girders in the superstructure immediately adjacent to the column. Observed load distributions 

scale tests confirm the girders that are not adjacent to the column consistently resist 

a significant amount of the column moment. 
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3. Load predictions determined using the lateral load SSM compare favorably with more complex 

GMA techniques. The ratios of GMA interior girder distribution to SSM interior girder 

distribution are 1.10, 0.98, 0.99, and 0.89, for the PBT, SPC 1, SPC 2, and ITB structures, 

respectively. The largest difference between GMA and SSM predictions is for the ITB structure (a 

difference of 11.3%), and in this instance the SSM prediction matches the experimental 

distribution almost exactly while the more complex GMA technique provides a poorer 

prediction. 

4. The analytical predictions of lateral load distribution to the interior girders based on the SSM 

model average a difference of 5.0% from the experimental distribution values, with a maximum 

difference of 9.8%. The average percentage difference of the GMA predictions from the 

experimental values is 5.9%, with a maximum difference of 12.7%. 

5. At very low levels of lateral load (as low as 0.25 Fy, with Fy representing column yield due to 

lateral load), the test units consistently show at least 15% of the lateral load being distributed to 

the exterior girders. This distribution remains almost constant all the way to the maximum 

displacement ductility levels (as high as µD = 10.0) experienced by each test unit. 

6. Current design recommendations overestimate the lateral load distribution to the girders 

adjacent to the column by as much as 60%. As described in Conclusion 4, the SSM approach 

provides significant improvement in the distribution predictions without implementing a more 

complex analytical approach. When using the SSM approach, a multiplier of 1.2 is recommended 

over the calculated distribution factor, based on the results from the four structures in this 

study. The design girder moment determined using the SSM approach is then expected to be 

10% to 20% higher than the measured moment, a marked improvement over current 

recommendations. Improved distribution predictions will likely lead to shallower girders due to 

reduced demand in the connection region.  
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CHAPTER 6. ANALYTICAL INVESTIGATION OF PRECAST GIRDER CONNECTIONS SUBJECTED TO SEISMIC 

MOTION INCLUDING VERTICAL ACCELERATION EFFECTS 

A paper to be submitted to Engineering Structures 
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6.1. Abstract 

Accelerated bridge construction (ABC) methods offer many desirable characteristics compared to 

traditional bridge construction techniques. However, implementation of such methods, especially those 

that involve the use of precast concrete members, has been rare in seismic regions because of poor 

performance of connections between precast members in past seismic events. Two new connection 

details have been developed to provide integral connections between precast concrete I-shaped girders 

and precast or cast-in-place concrete inverted-tee cap beams. Experimental work has shown that these 

details are viable for seismic regions, but analytical work investigating the effects of time-history ground 

motions on the connections will be valuable to further validate the connections as useful details for 

advancing ABC opportunities in seismic regions. 

Several methods for incorporating vertical accelerations have been investigated in this analysis. 

These methods include applying constant vertical acceleration, incorporating vertical ground motion as 

a factor of recorded horizontal ground motion, and utilizing recorded vertical ground motion 

simultaneously with recorded horizontal ground motion. These analysis approaches provided 

opportunities to compare with experimental results and also critique current vertical acceleration design 

recommendations, such as those included in the California Department of Transportation’s (Caltrans) 

Seismic Design Criteria (SDC). Conclusions related to the validity of the connection details, 

appropriateness of vertical acceleration analysis approaches, and current design recommendations 

related to vertical acceleration are presented in this paper. 
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6.2. Introduction 

Accelerated bridge construction (ABC) methods are increasingly in vogue in the United States. 

Departments of Transportation around the country have been pursuing ABC approaches for over a 

decade (NCHRP, 2011). ABC techniques rely on extensive prefabrication to minimize field construction 

time. Decreased time in the field results in reduced field cost, reduced public total cost because of 

reduced detour time, and improved quality by moving more of the construction process to a controlled 

shop environment. 

One of the most common ways to accomplish ABC is to utilize precast concrete elements in place of 

traditional cast-in-place concrete approaches. However, implementation of precast concrete in seismic 

regions is difficult because of the susceptibility of the connections. The last two major earthquake 

events in California (Loma Prieta in 1989 and Northridge in 1994) both exposed significant flaws in 

precast concrete connections, revealing the vulnerability of precast structures when subjected to large 

earthquake loads. 

Bridge designs utilizing integral superstructure connections are implemented frequently in high 

seismic regions because of the desirable overall structural configuration they provide. The moment 

capacity provided in the girder-to-cap connections results in significant moment demand in the top of 

the columns when the structure is subjected to horizontal loading. Consequently, the column top can be 

detailed as a plastic hinge region for the high seismic displacement condition, providing additional 

energy absorption during large earthquake events. However, the difficulty of seismic-sufficient precast 

concrete connections, especially when attempting to provide significant moment capacity through the 

connection, means that the incorporation ABC methods into integral superstructure designs in seismic 

regions is difficult. 

Recognizing the vulnerability of precast connections under seismic loading, the California 

Department of Transportation (Caltrans) has implemented specific requirements for precast 

connections of integral elements. Section 7.2.3 of Caltrans’ Seismic Design Criteria (2013) addresses 

specific precast girder requirements. While the current version acknowledges that precast spliced 

girders can be viable for integral superstructures, this type of system is still considered to be “non-

standard.” Additionally, SDC calls for specific vertical acceleration requirements for superstructure 
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connections, detailed in Section 7.2.2. Interest in vertical acceleration effects has heightened in recent 

years, especially following the devastating effects of vertical ground motion in the 2011 ChristChurch 

earthquake (Kam and Pampanin, 2011). 

For integral superstructure connections suitable for ABC techniques to be viable for seismic regions, 

they need to be shown to provide sufficient moment continuity to resist column overstrength moment 

along with sufficient shear capacity including vertical effects. Recent experimental work has been 

conducted to investigate two similar details for such capability. The overall concept was validated in a 

large-scale system test (Snyder et al., 2011) and two girder-to-cap connection details for use in such a 

system were tested in large-scale component tests (Sritharan et al., 2013). While the experimental 

results verified the sufficiency of the connection details using pseudostatic loading techniques, no 

analytical models that utilized ground motion time-history analyses for comparison with the 

experimental results had been completed. Thus, an analytical model utilizing OpenSees (2013) was 

developed to investigate the influence of vertical acceleration on the girder connections. This analytical 

work is presented in this paper. 

6.3. Vertical Acceleration Analytical Approaches 

The analytical model was developed in particular to investigate the moment and shear demands in 

integral bridge girder-to-cap connections under various earthquake load scenarios. Since the influence 

of vertical ground motion is a particular area of concern for such connections, special attention was 

given to appropriate methods for incorporating vertical acceleration effects into this analysis. Three 

approaches for modeling vertical ground motion were considered: (1) modeling the vertical acceleration 

as constant pseudostatic upward or downward force along the bridge superstructure, (2) using a time-

history analysis incorporating horizontal ground motion data from actual earthquake events and 

modeling the vertical acceleration as two-thirds the magnitude of the horizontal acceleration, and (3) 

using time-history ground motion data for both horizontal and vertical acceleration as recorded in actual 

earthquake events. All three of these approaches have been used in similar analytical efforts and are 

discussed in the following sections. 
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6.3.1. Constant Vertical Acceleration 

From a modeling standpoint, a simple way to incorporate vertical acceleration effects is to use a 

static force based on the structure’s mass and the expected vertical acceleration. With this method the 

definition of the load is straightforward, the analysis tends to be stable, and the results are easily 

interpretable. The challenge with this method is using a meaningful vertical acceleration and associated 

constant force. Studies continue to investigate likely magnitudes of vertical acceleration during 

earthquake events, but regional effects like topography, soil type, and proximity to fault make such 

predictions very difficult. 

6.3.2. Vertical Acceleration as a Function of Horizontal Acceleration 

Much of the recent research effort related to vertical acceleration has focused on comparing 

magnitudes of peak ground acceleration (PGA) in the horizontal and vertical directions. A common 

practice is to use 2/3 as the ratio of peak vertical to peak horizontal acceleration (V/H), but it is currently 

recognized that this practice is not always conservative. Because of the complexity of the relationship, 

many of the current efforts related to modeling vertical acceleration utilize numerical parametric 

approaches to develop V/H estimates. These algorithms are developed to learn the nonlinear 

relationships between predictive variables and the V/H ratio directly from the ground motion data, such 

as the study by Tezcan and Cheng (2012). Many other studies in the past couple of decades have 

proposed similar models using site and ground motion parameters, such as Gulerce and Ambrahamson 

(2011), Kalkan and Bulkan (2004), and Ambraseys and Simpson (1996). 

These and similar studies have shown that the V/H ratio is typically less than or equal to 2/3. A study 

by Yang and Lee (2007) investigated the vertical and horizontal ground motion characteristics during the 

earthquake in Niigata-ken Chuetsu, Japan, in 2004. This study showed that V/H was typically less than or 

equal to 2/3 for this data set, but for a few sites the ratio was as high as 1. The study concluded that the 

V/H ratio was strongly dependent on spectra frequency, site-to-source distance, and site condition. It 

showed that the V/H ratio could be significantly higher than 2/3 at short periods, in near-field regions, 

and at extremely long periods. 
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6.3.3. Horizontal and Vertical Ground Motion 

The studies mentioned above focus on the V/H ratio, taking V as the magnitude of the vertical PGA 

and H as the magnitude of the horizontal PGA. The limitation of this method is that it utilizes the peak 

values from both the vertical and horizontal directions, but these peak values rarely occur at the same 

time. Thus, using the V/H ratio to predict vertical ground motion based on horizontal ground motion is 

likely to be overly conservative. One of the only studies that considered simultaneous vertical and 

horizontal accelerations was conducted by Ambraseys and Douglas (2000), along with a follow-up study 

in 2003. These studies mentioned the limitation of omitting consideration of simultaneous behavior: “A 

major draw-back of the acceleration ratio…for practical purposes is that in an earthquake the maximum 

ground or response accelerations in the vertical and horizontal direction occur at different times.” 

However, in a couple significant earthquake events the peaks have been verified to occur at almost 

the same time, especially for near-fault rock sites. Figure 6.1a shows the ground motion for two such 

sites, the Pacoima Dam during the 1994 Northridge event and Eureka Canyon Road during the 1989 

Loma Prieta Event. The peak vertical motion (middle line on both records) occurs at almost exactly the 

same time as the peaks in the two horizontal directions (top and bottom lines on both records). 

Interestingly, the near-fault non-rock sites do not show similar behavior, as indicated by the records in 

Figure 6.1b that are also from the Northridge event. Comparing these records shows the difficulty of 

developing a one-size-fits-all approach to predicting vertical acceleration based on horizontal ground 

motion. 
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a. Rock sites from the 1994 Northridge event (top) and the 1989 Loma Prieta event (bottom) 

 

b. Close soil sites from the 1994 Northridge event 

Figure 6.1. Horizontal and vertical component acceleration time histories from the 1994 Northridge 

and 1989 Loma Prieta events (Silva, 1997) 
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6.4. Connection Details and Experimental Validation  

The integral connections that were developed in this study are improvements of an existing Caltrans 

detail used for connecting I-shaped girders and inverted-tee cap beams. Figure 6.2a shows a precast 

inverted-tee cap beam prior to girder placement. Dapped-end I-shaped girders can then be positioned 

on the cap beam corbel, and a cast-in-place diaphragm can be used to provide connection continuity by 

encasing dowel bars positioned through the girder as shown in Figure 6.2b. The dowel/diaphragm detail 

provides some connection fixity, and the deck reinforcement provides tension continuity for the typical 

negative moment action that occurs at the girder-cap connection under normal dead and live load. 

However, neither of these mechanisms can provide direct tension continuity for positive moment action 

at the connection, which can occur during large seismic events. 

In the experimental work, two different methods were investigated to provide this positive moment 

fixity. In the Grouted Unstressed Strand Connection (GUSC) detail, unstressed strand was run 

continuously through ducts in the cap beam and girder bottom flange and grouted in place, as shown in 

Figure 6.2b. In the Looped Unstressed Strand Connection (LUSC) detail, looped strands were extended 

out from the cap beam outside the girder, which also contained looped strands, and dowel bars were 

positioned between the loops as shown in Figure 6.2c and then anchored by the cast-in-place 

diaphragm. 
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Figure 6.2. Connection concepts for inverted tee cap beam and dapped end girder 

The connections were developed to be used in an overall inverted tee bridge system such as 

demonstrated in the prototype bridge shown in Figure 6.3. To investigate the validity of such a system, a 

large-scale experimental study was conducted that modeled the dashed region shown around Bent 3 in 

Figure 6.3. The 50%-scale test unit included a foundation, a single concrete column, a concrete inverted-
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tee cap beam, and five I-shaped prestressed concrete gi

Pseudostatic loading was used to simulate horizontal seismic loading. The horizontal force

response of this bridge system is shown in 

superstructure remaining elastic during the entirety of simulated horizontal seismic loading. The 

superstructure behavior allowed the development of plastic hinges in both the top and bottom o

column. The system retained strength up to large horizontal displacements, maintaining full strength as 

high as ductility µD = 8 and still demonstrating significant strength at ductility 

investigate vertical acceleration effects, a second loading configuration was used that fully exercised the 

girder-to-cap connections and demonstrated significant vertical load reserve capacity in the connections 

beyond the demand generated under horizontal seismic loading conditions. Detailed information on 

both phases of testing is provided by Snyder et al. (2011).

Figure 6.3. Prototype bridge utilizing the inverted tee system

Figure 6.4. Experimental horizontal force
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shaped prestressed concrete girders on each side of the cap beam. 

Pseudostatic loading was used to simulate horizontal seismic loading. The horizontal force

response of this bridge system is shown in Figure 6.4. The system performed well, with the 

superstructure remaining elastic during the entirety of simulated horizontal seismic loading. The 

superstructure behavior allowed the development of plastic hinges in both the top and bottom o

column. The system retained strength up to large horizontal displacements, maintaining full strength as 

= 8 and still demonstrating significant strength at ductility µD 

investigate vertical acceleration effects, a second loading configuration was used that fully exercised the 

cap connections and demonstrated significant vertical load reserve capacity in the connections 

ted under horizontal seismic loading conditions. Detailed information on 

both phases of testing is provided by Snyder et al. (2011). 

. Prototype bridge utilizing the inverted tee system 

 

. Experimental horizontal force-displacement response for the inverted

rders on each side of the cap beam. 

Pseudostatic loading was used to simulate horizontal seismic loading. The horizontal force-displacement 

. The system performed well, with the 

superstructure remaining elastic during the entirety of simulated horizontal seismic loading. The 

superstructure behavior allowed the development of plastic hinges in both the top and bottom of the 

column. The system retained strength up to large horizontal displacements, maintaining full strength as 

 = 10. To begin to 

investigate vertical acceleration effects, a second loading configuration was used that fully exercised the 

cap connections and demonstrated significant vertical load reserve capacity in the connections 

ted under horizontal seismic loading conditions. Detailed information on 

 

displacement response for the inverted-tee system 
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To further investigate the capability of the girder

component test was conducted that focused on the GUSC and LUSC details presented above. This 

connection test utilized a 50%-scale test unit that modeled a portion of the inverted tee cap beam and 

portions of two I-shaped precast girders, one incorporating the GUSC detail and on

split bridge deck was used between the two girders so each could be exercised individually. 

provides the moment-displacement response

that represent how the moment magnitudes correspond to the gravity, horizontal, and vertical 

acceleration conditions in the bridge system. The maximum earthquake condition shown on these 

figures, represented by “G + H + 1.0V,” is based on the full gravity and full horizontal seismic moment 

(based on the column overstrength moment from the system test) with the addition

acceleration equal to 1.0g. As shown, the moment strength of 

connection test in both the negative and positive moment directions was well beyond any of 

earthquake levels. 

 a. GUSC test 

Figure 6.5. Connection moment as a function of vertical girder end displacement

6.5. 

The vertical acceleration levels indicated in 

connection test were based on simple hand calculations accounting for the mass of the bridge structure 

and considering varying factors of gravity bein

investigate the shear and moment conditions that would be experienced by an inverted

system, an analytical model of the bridge system has been developed in 

OpenSees for this analysis provides the capability of introducing real time

model, digging deeper than simple constant acceleration simulations and increasing confidence in the 
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To further investigate the capability of the girder-to-cap connections in the inverted tee system, a 

ducted that focused on the GUSC and LUSC details presented above. This 

scale test unit that modeled a portion of the inverted tee cap beam and 

shaped precast girders, one incorporating the GUSC detail and one using LUSC detail. A 

split bridge deck was used between the two girders so each could be exercised individually. 

displacement response of the two connection details, including horizontal lines 

that represent how the moment magnitudes correspond to the gravity, horizontal, and vertical 

acceleration conditions in the bridge system. The maximum earthquake condition shown on these 

epresented by “G + H + 1.0V,” is based on the full gravity and full horizontal seismic moment 

(based on the column overstrength moment from the system test) with the addition 

acceleration equal to 1.0g. As shown, the moment strength of both details demonstrated in the 

connection test in both the negative and positive moment directions was well beyond any of 

 

b. LUSC test

n moment as a function of vertical girder end displacement

 Development of the Analytical Model 

The vertical acceleration levels indicated in Figure 6.5 and used to determine the loading in the 

connection test were based on simple hand calculations accounting for the mass of the bridge structure 

and considering varying factors of gravity being applied both upwards and downwards. To further 

investigate the shear and moment conditions that would be experienced by an inverted

system, an analytical model of the bridge system has been developed in OpenSees 

analysis provides the capability of introducing real time-history ground motion to the 

model, digging deeper than simple constant acceleration simulations and increasing confidence in the 

cap connections in the inverted tee system, a 

ducted that focused on the GUSC and LUSC details presented above. This 

scale test unit that modeled a portion of the inverted tee cap beam and 

e using LUSC detail. A 

split bridge deck was used between the two girders so each could be exercised individually. Figure 6.5 

of the two connection details, including horizontal lines 

that represent how the moment magnitudes correspond to the gravity, horizontal, and vertical 

acceleration conditions in the bridge system. The maximum earthquake condition shown on these 

epresented by “G + H + 1.0V,” is based on the full gravity and full horizontal seismic moment 

 of vertical seismic 

both details demonstrated in the 

connection test in both the negative and positive moment directions was well beyond any of the critical 

 

b. LUSC test 

n moment as a function of vertical girder end displacement 

and used to determine the loading in the 

connection test were based on simple hand calculations accounting for the mass of the bridge structure 

g applied both upwards and downwards. To further 

investigate the shear and moment conditions that would be experienced by an inverted-tee bridge 

OpenSees (2013). Using 

history ground motion to the 

model, digging deeper than simple constant acceleration simulations and increasing confidence in the 
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performance of the connections under severe seismic load conditions. To allow simple comparison with 

previous analytical and experimental work, the test unit used in the system test study was chosen as the 

basis for the analytical model. 

6.5.1. Column: Fiber-Based Beam-Column Elements Incorporating Strain Penetration Effects 

Because a significant portion of the shear and moment that occurs in the superstructure 

connections of the inverted-tee system is related to the column plastic hinge behavior, it was crucial to 

model the column of the bridge system properly. Many studies have utilized fiber sections in OpenSees 

to successfully model nonlinear behavior of reinforced concrete elements under seismic loading (see, for 

example, Spacone et al., 1996). This method provides the opportunity to use different material models 

for confined and unconfined concrete  and also allows the longitudinal reinforcement to be modeled 

using a steel material model and located and to be physically located in the proper locations. 

Figure 6.6a provides a cross-section of the fiber section used to model the system test column. The 

core region of the column was modeled using confined concrete material properties based on OpenSees’ 

Concrete02 material model (Yassin, 1994). The Concrete07 model, based on Chang and Mander’s 

concrete model (1994) and developed for OpenSees by Waugh and Sritharan (2010), was considered, 

but this model produced some convergence issues and did not seem to noticeably improve the results 

from the Concrete02 model. The material properties used in the Concrete02 definition were based on 

the measured concrete strength from the system test, incorporating the recommendations from 

California’s Applied Technology Council (ATC, 1996) and Priestley et al. (1996) to determine the 

appropriate material model parameters. The outer portion of the column cross-section was modeled 

using unconfined concrete material properties, also using the Concrete 02 material model. Similar 

recommendations were followed to establish the appropriate unconfined concrete parameters based on 

the measured system test properties. Table 6.1 lists the concrete material properties used in the model. 

The Steel02 (Filippou et al., 1983) material model was used for the mild reinforcement. This material 

incorporates hysteretic behavior along with isotropic hardening in tension and compression. 

Appropriate material parameters for the model were determined based on the measured values of the 

reinforcement used in the system test. The steel material model properties are listed in Table 6.2. The 

values recommended by OpenSees were used for the isotropic hardening parameters. 
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Using a fiber section allowed the three different materials described above to be modeled 

appropriately in the column section. Figure 6.6b provides a close-up view of a small outer segment of 

the column cross-section as modeled. Each grid space in this view represents a single fiber in the model, 

which can be thought of as a very small beam element oriented in the column longitudinal direction 

(perpendicular to the page). Each of these fibers is defined with the appropriate material property. The 

steel reinforcing bars are modeled as single fibers with appropriate material properties and cross-

sectional area, with locations in the column cross-section matching the physical test unit locations. The 

fiber definitions are used to define an overall cross-section that is incorporated into beam-column 

elements used to define the column. 

 

a. Column cross-section 

 

b. Close-up view of fiber arrangement 

Figure 6.6. Fiber-based cross section for beam-column element used to model system test column in 

OpenSees analysis  
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Table 6.1. Concrete material properties in OpenSees analysis 

Parameter Description Magnitude 

f’c Measured test unit concrete compressive strength 6.81 ksi 

Confined Concrete Material Model 

fpc Concrete compressive strength 8.52 ksi 

εpsc0 Concrete strain at maximum strength 0.0045 

fpcu Concrete crushing strength 0.85 ksi 

εpsU Concrete strain at crushing strength 0.0904 

λ Ratio between unloading slope at εpsc0 and initial slope 0.1 

ft Tensile strength 0.0005 ksi 

Ets Absolute value slope of the linear tension softening branch 1912 ksi 

Unconfined Concrete Material Model 

fpc Concrete compressive strength 6.81 ksi 

εpsc0 Concrete strain at maximum strength 0.0023 

fpcu Concrete crushing strength 0.68 ksi 

εpsU Concrete strain at crushing strength 0.0052 

λ Ratio between unloading slope at εpsc0 and initial slope 0.1 

ft Tensile strength 0.0005 ksi 

Ets Absolute value slope of the linear tension softening branch 1912 ksi 

Table 6.2. Steel reinforcement material properties in OpenSees analysis 

Parameter Description Magnitude 

Fy Yield strength of the steel reinforcement 62.3 ksi 

E0 Initial elastic tangent 29000 ksi 

b 
Strain-hardening ratio (ratio between post-yield tangent and initial 

elastic tangent) 
0.0092 

R0 Parameter for isotropic hardening behavior 18 

cR1 Coefficient for isotropic hardening behavior 0.925 

cR2 Coefficient for isotropic hardening behavior 0.15 
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Research by Zhao and Sritharan (2007) has shown that the incorporation of strain penetration 

effects in fiber-based analysis can improve the modeling of the plastic hinge regions. This method was 

incorporated in an effort to simulate the moment at the top of the column appropriately and 

subsequently provide appropriate moment and shear results in the superstructure connections adjacent 

to the column. In OpenSees, Zhao and Sritharan’s material model for steel reinforcement incorporating 

strain penetration is defined as Bond SP01, and this model was used in the analysis. The material 

properties incorporated into the Bond SP01 material model are provided in Table 6.3. 

Recommendations from Zhao and Sritharan were incorporated to determine the appropriate 

parameters based on the measured material properties of the steel reinforcement. 

Table 6.3. Steel reinforcement properties incorporating strain penetration effects 

Parameter Description Magnitude 

Fy Yield strength of the steel reinforcement 62.3 ksi 

Sy Rebar slip at member interface under yield stress 0.0167 in. 

Fu Ultimate strength of the steel reinforcement 92.4 ksi 

Su Rebar slip at the loaded end at the bar fracture strength 0.500 in. 

b Initial hardening ratio in the monotonic slip vs. bar stress response 0.5 

R Pinching factor for the cyclic slip vs. bar response 1.0 

 

The strain penetration effects were incorporated into the column model by substituting the Bond 

SP01 material for the Steel02 material in the reinforcement fiber locations in zero-length-elements that 

were established at the top and bottom of the column. The concrete material properties in the zero-

length-elements were also adjusted based on Zhao and Sritharan’s recommendation. This adjustment 

consisted of modeling both the confined and unconfined concrete materials as remaining perfectly 

plastic once they degraded to 80% of their original strength. Without this adjustment, the concrete 

fibers produce unrealistically “soft” results when incorporated in the strain penetration section, because 

of the large deformations that occur in the section. The modified concrete properties used in the zero-

length-elements in the plastic hinge regions are provided in Table 6.4. 
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Table 6.4. Concrete properties in the zero-length elements 

Parameter Description Magnitude 

fpc Concrete compressive strength 8.52 ksi 

εpsc0 Concrete strain at maximum strength 0.0045 

fpcu Concrete crushing strength 6.82 ksi 

εpsU Concrete strain at crushing strength 0.0904 

λ Ratio between unloading slope at εpsc0 and initial slope 0.1 

ft Tensile strength 0.0005 ksi 

Ets Absolute value slope of the linear tension softening branch 1912 ksi 

 

6.5.2. Superstructure: Two-Dimensional Linear Elastic Elements 

To provide appropriate resistance at the top of the column, and to provide a means to investigate 

the distribution of the moment and shear from the column into the superstructure, OpenSees was used 

to develop a two-dimensional analytical model representative of the experimental system test unit. A 

two-dimensional model, rather than a more complex finite element analysis (FEA) or grillage analysis 

approach, was deemed appropriate since only the longitudinal horizontal and vertical effects were of 

interest. In addition, the experimental work had already verified that the superstructure remained 

elastic up to seismic load levels significantly higher than the column overstrength moment, including 

significant reserve capacity for vertical acceleration effects, so adding the complexity of nonlinear 

behavior to the superstructure model was deemed unnecessary. 

The analytical model utilized the fiber-based beam-column elements described above for the 

column sections and incorporated two-dimensional linear elastic elements representative of the bridge 

superstructure. The model was based on the experimental system test unit. A schematic of the model is 

shown in Figure 6.7a, where elements 1-7 are the beam-column elements representing the column and 

elements 8-19 are the elastic elements representing the superstructure. 
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a. Original analytical model without staged superstructure elements

b. Staged superstructure elements added in 

Figure 6.7. Analytical model of the system test unit, including column and superstructure

One limitation of this analysis method was that it did no

distribution of the load to the individual girders and individual connections. However, an FE study by 

Theimann (2010) on the prototype bridge and a grillage analysis by Snyder (2011) on the system test 

unit had already been conducted, and results from these studies were used to

factors for vertical and lateral load between the girders. In addition, an extensive study was conducted 

on the vertical and lateral load distribution in this test u

studies (Vander Werff and Sritharan, 2014), and the results from this work were used to provide 

confidence in the load distribution that would be experienced by the girders in the superstructure.

Concrete compressive strength from the test day was used, following American Concrete Institute 

recommendations (ACI, 2011), to establish the modulus of elasticity for the elastic elements. The cap 

beam and diaphragm region of the superstructure near the column was model

element. For the elements representing the five
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a. Original analytical model without staged superstructure elements

b. Staged superstructure elements added in parallel to the original model to incorporate staged loading

. Analytical model of the system test unit, including column and superstructure

One limitation of this analysis method was that it did not allow the model to be used to investigate 

distribution of the load to the individual girders and individual connections. However, an FE study by 

Theimann (2010) on the prototype bridge and a grillage analysis by Snyder (2011) on the system test 

already been conducted, and results from these studies were used to determine distribution 

factors for vertical and lateral load between the girders. In addition, an extensive study was conducted 

on the vertical and lateral load distribution in this test unit and three other large-scale experimental 

studies (Vander Werff and Sritharan, 2014), and the results from this work were used to provide 

confidence in the load distribution that would be experienced by the girders in the superstructure.

ssive strength from the test day was used, following American Concrete Institute 

recommendations (ACI, 2011), to establish the modulus of elasticity for the elastic elements. The cap 

beam and diaphragm region of the superstructure near the column was modeled as a solid rectangular 

element. For the elements representing the five-girder-and-deck cross-sections, the composite gross 

 

a. Original analytical model without staged superstructure elements 

 

parallel to the original model to incorporate staged loading 

. Analytical model of the system test unit, including column and superstructure 

t allow the model to be used to investigate 

distribution of the load to the individual girders and individual connections. However, an FE study by 

Theimann (2010) on the prototype bridge and a grillage analysis by Snyder (2011) on the system test 

determine distribution 

factors for vertical and lateral load between the girders. In addition, an extensive study was conducted 

scale experimental 

studies (Vander Werff and Sritharan, 2014), and the results from this work were used to provide 

confidence in the load distribution that would be experienced by the girders in the superstructure. 

ssive strength from the test day was used, following American Concrete Institute 

recommendations (ACI, 2011), to establish the modulus of elasticity for the elastic elements. The cap 

ed as a solid rectangular 

sections, the composite gross 
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moment of inertia for the girders and deck was determined. Findings from the grillage analysis (Snyder, 

2011) had indicated that elastic behavior of the girder sections under positive moment could be 

represented by using about 25% of the gross section properties, and elastic behavior of the girder 

sections under negative moment could be represented by about 65% of the gross section properties. 

However, a main purpose of creating the OpenSees model was to provide the opportunity for a fully-

reversible time-history analysis, meaning that different portions of the bridge superstructure would be 

subjected to varying positive and negative moment action during different stages of the time-history 

ground motion analysis. Consequently, incorporation of differing positive and negative moment section 

properties would require variable cross-section properties based on instantaneous load condition. Since 

the largest portion of the test unit bridge superstructure is subjected to positive moment action under 

any given loading, the positive moment section properties were used for the elastic superstructure 

elements. Results from initial analyses using the OpenSees model were compared with results from the 

earlier grillage analysis to verify the appropriateness of this approach. To provide appropriate 

superstructure stiffness, the final elastic superstructure section properties were reduced a bit from the 

grillage positive-moment section properties; this process is discussed in more detail below. 

6.5.3. Staged Loading of the Superstructure 

One of the challenges in modeling an integral bridge superstructure is that a portion of the structure 

self-weight is transferred through the girder-to-cap connection prior to fixity being established at the 

connection. When the girders are initially positioned, they merely rest on the cap corbel and thus 

behave as simply-supported beam elements. Thus, while the girders produce significant shear in the 

connection region during this stage (deemed “Stage 1”), there is no accompanying moment in the 

connection. When the deck and diaphragm concrete is initially, prior to curing, this Stage 1 behavior 

continues. It is only after the diaphragm concrete cures that fixity is established at the connection and 

true moment continuity is established. Since the concrete encasing the connection cures after the girder 

self-weight and deck concrete weight is already present, it hardens around the girder end in an already-

deflected positioned, retaining the girder curvature from the Stage 1 condition. The end result is that 

the load transferred during Stage 1 continues to be carried through the connection region as if the 

girder end has no moment continuity, whereas all superstructure loads that occur after fixity is 

established (deemed “Stage 2”) are transferred through a continuous moment connection. 
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To account for the staged loading behavior, superstructure elements identical to and parallel with 

the initial elastic superstructure elements were established. These staged elements are shown in Figure 

6.7b. The elements were modeled using independent nodes from the original superstructure. The only 

connections between the staged elements and the original elements occurred at nodes 27 and 28, 

where the horizontal and vertical translation degrees of freedom were slaved to nodes 14 and 16 of the 

original superstructure. Since only the translational degrees of freedom were slaved, the connections of 

the staged elements behaved as if they were pinned to the original superstructure at these locations. 

This configuration provided the ability to apply all Stage 1 loads to the staged elements, producing 

pinned-connection behavior in the superstructure, while all Stage 2 loads could be applied to the 

original superstructure elements, producing moment-connection behavior. 

To investigate the importance of correctly modeling the staged loading behavior, a cyclic horizontal 

ground motion analysis was conducted using two identical models, except one of the models 

incorporated the staged superstructure elements and one did not. For the staged analysis, self-weight 

loads were applied using static concentrated loads at node locations along the staged elements and 

above the column as appropriate, and the superstructure mass that was excited by the ground motion 

was included as lumped masses on the fixed superstructure elements. For the fixed analysis, all of the 

self-weight loads and lumped masses were included on the fixed elements. 

Figure 6.8 provides the results of these comparative analyses. Figure 6.8a compares the shear in the 

connection region for the two models as the superstructure was exercised horizontally back and forth, 

while Figure 6.8b compares the moment in the connection region during the same horizontal excitation. 

The shear comparison between the two models is very similar, which is expected since a pin connection 

provides shear continuity. However, the moment comparison shows a dramatic difference. Horizontal 

earthquake excitation for the “Fixed” model never even generated a positive moment in the connection! 

If such connection moment was truly representative of the superstructure performance, the GUSC and 

LUSC details would not even be necessary, since the superstructure connections would never be 

subjected to fully-reversed positive moment action. Observation and experience has clearly 

demonstrated that such an analysis is misleading, and thankfully the “Staged” model provided much 

more realistic results. The connection moment in the staged model varied from about -170 kip-ft at peak 

horizontal ground motion in one direction to around +160 kip-ft at peak horizontal motion in the other 



www.manaraa.com

 

 

direction. This analysis verified that the “Staged” approach provided a more desirable way to 

appropriately simulate connection conditions under seismic loading.

Figure 6.8. Connection behavior under cyclic horizontal ground motion analysis, comparing results 

with and without staged elements

 

The addition of the staged elements, when no vertical load is present, does not affe

stiffness of the superstructure due to moments at the top of the column. The roller
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direction. This analysis verified that the “Staged” approach provided a more desirable way to 

appropriately simulate connection conditions under seismic loading. 

 

a. Connection shear 

 

b. Connection moment 

. Connection behavior under cyclic horizontal ground motion analysis, comparing results 

with and without staged elements 

The addition of the staged elements, when no vertical load is present, does not affe

stiffness of the superstructure due to moments at the top of the column. The roller-type supports at the 

direction. This analysis verified that the “Staged” approach provided a more desirable way to 

. Connection behavior under cyclic horizontal ground motion analysis, comparing results 

The addition of the staged elements, when no vertical load is present, does not affect the rotational 

type supports at the 
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ends of the staged elements result in a link-mechanism type of behavior that freely rotates and slides 

back and forth when moments are introduced in the column region. However, when vertical loads are 

introduced along the superstructure elements, the additional parallel elements do affect the stiffness 

distribution throughout the structure, because of the combined flexural action that occurs in both of the 

staged and parallel superstructure elements. Care in maintaining a close representation of the actual 

relative stiffnesses was important to provide meaningful moment distribution results in the interaction 

of the column and the two sides of the superstructure. 

To provide realistic relative stiffnesses in the model, the superstructure section properties were 

adjusted based on comparison of the OpenSees and grillage model results. The properties for the fixed 

superstructure elements were based on approximately 50 percent of the gross section properties, to 

provide a reasonable approximation of cracked and uncracked properties in the positive and negative 

moment directions. The section properties for the additional staged elements, however, were based on 

only 10 percent of the fixed element properties (approximately 5 percent of the gross section 

properties), to minimize their effect on the overall superstructure behavior. Figure 6.9 shows the 

comparison of shear and moment diagrams from the OpenSees and grillage analyses, following the 

superstructure stiffness adjustment, under a horizontal load condition producing the column 

overstrength moment in the top of the column. While the node locations and concentrated self-weight 

loads in the OpenSees model result in slightly different profiles along the girder length, as shown in 

Figure 6.9a, the shear values for the two models in the connection region compare very well. Figure 6.9b 

reveals an excellent comparison for the moment diagrams of the two models, both in the connection 

region and along the entire length of the girders. 
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a. Shear diagram

b. Moment diagram

Figure 6.9. Superstructure behavior under horizontal static analysis
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Shear diagram for center girder along girder length 

Moment diagram for center girder along girder length 

. Superstructure behavior under horizontal static analysis

 

 

. Superstructure behavior under horizontal static analysis 
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6.6. Analytical Verification of the Superstructure Performance 

6.6.1. Horizontal Loading for Verification of the Model 

Three different horizontal load/displacement analyses were conducted to investigate the overall 

performance of the analytical model prior to focusing on superstructure behavior and incorporating 

vertical acceleration effects. First, a pushover analysis was conducted, and the horizontal force-

displacement response from the OpenSees model was compared with the system test experimental 

results. Figure 6.10a provides this comparison by showing the experimental results, the OpenSees 

results for the fixed model without staged elements, and the OpenSees results including the staged 

elements. The fixed model is seen to be a very close match with the experimental results, but the model 

including staged elements matches quite closely also. Since the primary purpose of the OpenSees model 

is to investigate the superstructure behavior, the results from the staged model are deemed to match 

closely enough with the overall results to provide meaningful superstructure action comparison. 

These good comparisons verify that the fiber-based beam-column element approach for modeling 

the column, including the incorporation of strain penetration in the plastic hinge regions, is a good 

approach for incorporating nonlinear reinforced concrete column behavior. The comparison also 

indicates that the use of elastic elements to represent the superstructure, using appropriate stiffness 

values, provided a suitable representation of the overall behavior of the bridge system. 
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c. Time-history analysis using recorded ground motion from El Centro event

Figure 6.10. Analytical horizontal force
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a. Pushover analysis 

 

b. Cyclic pushover analysis 

 

history analysis using recorded ground motion from El Centro event

. Analytical horizontal force-displacement response for various excitation conditions

history analysis using recorded ground motion from El Centro event 

displacement response for various excitation conditions 
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The next horizontal load method that was used to investigate the model performance was a cyclic 

horizontal pushover analysis. Displacement control was used in the model to generate the results shown 

in Figure 6.10b. These results compare well with the experimental force-displacement envelope, also 

shown in the figure, further confirming the validity of the model. 

The final verification based on horizontal load effects incorporated horizontal time-history ground 

motion data recorded during actual earthquake events. Figure 6.10c shows the results from an analysis 

that used ground motion data from the 1940 El Centro earthquake event in California, selected because 

of the large magnitude and relatively large ground motions recorded during this event. The results from 

the model again show envelope behavior that closely resembles the experimental envelope. 

6.6.2. Analytical Results in the Girder-to-Cap Connection Region 

Once the results from horizontal loading and ground motion analysis were used to verify the 

analytical model, vertical acceleration effects were incorporated to provide insight into the connection 

behavior. For comparison purposes, the three different approaches mentioned in the “Vertical 

Acceleration Analytical Approaches” section above were investigated. The first approach, which is the 

simplest from a modeling standpoint, was to introduce a uniform vertical acceleration to the model 

while utilizing time-history data for horizontal ground motion. A challenge of this approach, however, is 

deciding what uniform acceleration is appropriate. 

One reference that provides insight into current thought related to vertical acceleration magnitude 

is Caltrans’ Seismic Design Criteria (SDC, 2013). SDC currently requires that vertical acceleration must be 

incorporated for sites where the peak ground acceleration is at least 0.6g. When the vertical 

acceleration needs to be considered, SDC stipulates that the superstructure’s nominal capacity shall be 

determined “based on a uniformly applied vertical force equal to 25% of the dead load applied upward 

and downward” (Section 7.2.2, SDC, 2013). Thus, an analysis that would include both dead load and 

vertical acceleration effects would consist of a constant load equal to 125% of the gravity load.  

However, some earthquake events have revealed vertical accelerations considerably higher in 

magnitude than the 0.25g stipulated above, the most notable being the Christchurch 2011 event where 

accelerations as high as 2g were recorded (Kam and Pampanin, 2011). 0.25g seems to be a considerably 

unconservative estimate. Recall, however, the earlier discussion related to the rarity of vertical 
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acceleration peaks and horizontal acceleration peaks occurring simultaneously. The lack of unanimity 

between peaks in the two loading direc

time maximum peak magnitude that remains

varying horizontal ground motion magnitudes is likely overly conservative.

To investigate load magnitudes that comfortably satisfy the current 

unrealistically overconservative, a uniform vertical acceleration of 0.5g was chosen for the constant

vertical-acceleration analysis. The acceleration was applied to the model as a uniform ground motion, 

similar to using a vertical time-history record except using a constant value of 0.5g. The analysis was run 

twice, the first time incorporating a positive vertical acceleration and the second time using a negative 

vertical acceleration. For both runs, the recorded ground motion fro

horizontal excitation. 

The results for both connection shear and moment from these runs are provided in 

While the results from the vertical analyses are somewhat irregular, they reveal general trends that are 

unsurprising. In general, a positive vertical acceleration (signifying upward movement and therefore 

increased downward force) results in a considerable increase in 

shift in the connection moment. Conversely, a negative vertical acceleration (producing upward force) 

produces a similar shift in the opposite direction that decreases connection shear and shifts the 

connection moment in the positive direction.

 

 a. Connection shear

Figure 6.11. Connection behavior with El Centro horizontal ground motion and constant vertical 
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acceleration peaks and horizontal acceleration peaks occurring simultaneously. The lack of unanimity 

between peaks in the two loading directions means that applying a vertical acceleration equal to a 

peak magnitude that remains as a constant uniform load throughout the entirety of the 

varying horizontal ground motion magnitudes is likely overly conservative. 

To investigate load magnitudes that comfortably satisfy the current SDC requirements yet are not 

unrealistically overconservative, a uniform vertical acceleration of 0.5g was chosen for the constant

acceleration analysis. The acceleration was applied to the model as a uniform ground motion, 

history record except using a constant value of 0.5g. The analysis was run 

twice, the first time incorporating a positive vertical acceleration and the second time using a negative 

vertical acceleration. For both runs, the recorded ground motion from the El Centro event was used for 

The results for both connection shear and moment from these runs are provided in 

lts from the vertical analyses are somewhat irregular, they reveal general trends that are 

unsurprising. In general, a positive vertical acceleration (signifying upward movement and therefore 

increased downward force) results in a considerable increase in connection shear as well as a negative 

shift in the connection moment. Conversely, a negative vertical acceleration (producing upward force) 

produces a similar shift in the opposite direction that decreases connection shear and shifts the 

in the positive direction. 

 

a. Connection shear  b. Connection moment

. Connection behavior with El Centro horizontal ground motion and constant vertical 

acceleration ±0.5g 

acceleration peaks and horizontal acceleration peaks occurring simultaneously. The lack of unanimity 

vertical acceleration equal to a one-

throughout the entirety of the 

requirements yet are not 

unrealistically overconservative, a uniform vertical acceleration of 0.5g was chosen for the constant-

acceleration analysis. The acceleration was applied to the model as a uniform ground motion, 

history record except using a constant value of 0.5g. The analysis was run 

twice, the first time incorporating a positive vertical acceleration and the second time using a negative 

m the El Centro event was used for 

The results for both connection shear and moment from these runs are provided in Figure 6.11. 

lts from the vertical analyses are somewhat irregular, they reveal general trends that are 

unsurprising. In general, a positive vertical acceleration (signifying upward movement and therefore 

connection shear as well as a negative 

shift in the connection moment. Conversely, a negative vertical acceleration (producing upward force) 

produces a similar shift in the opposite direction that decreases connection shear and shifts the 

 

b. Connection moment 

. Connection behavior with El Centro horizontal ground motion and constant vertical 
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Since the vertical acceleration during an earthquake is not really a constant magnitude but is rather 

much more sporadic, a more realistic way to model the vertical acceleration is to use the recommended 

V/H ratio of 2/3 based on PGA in both directions. For this approach, the recorded horizontal ground 

motion is used, and the vertical acceleration is defined as 2/3 the instantaneous horizontal acceleration. 

This approach was utilized to produce the results shown in Figure 6.12, again using the El Centro ground 

motion. While the range of results from this analysis is considerably wider than the horizontal-only 

analysis, it is considerably lower than the envelope produced by the positive and negative vertical 

acceleration conditions in Figure 6.11. This comparison indicates that the use of a constant 0.5g vertical 

acceleration is perhaps overconservative; this possibility is discussed further in the following section. 

The other approach that was utilized for vertical acceleration incorporated actual recorded time-

history vertical ground motion data. Two events with especially large recorded vertical ground motions 

were used for this analysis, the 2011 Christchurch event in New Zealand and the 1994 Northridge event 

in southern California. To appropriate account for the 50% scale of the analytical model, the ground 

motion was factored by 2.0 and the time was factored by 0.5, following the recommendation of Kumar 

et al (1997). Figure 6.13 provides the connection region results for these two analyses. In terms of shear 

and moment magnitude, the results in Figure 6.13a and Figure 6.13b, from the Christchurch event, show 

remarkably little change between the horizontal-only and the horizontal-plus-vertical ground motions. 

In fact, the maximum positive and negative moments from the horizontal-only condition are actually 

higher than the combined condition, because the addition of the vertical motion seems to have 

dampened the structure slightly and produced slightly reduced horizontal displacements. However, 

Figure 6.13c and Figure 6.13d show a different result for the Northridge event. The addition of vertical 

acceleration makes a large difference, producing both shear and moment magnitudes even larger than 

the constant vertical acceleration magnitudes shown earlier in Figure 6.11.  
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 a. Connection shear

Figure 6.12. Connection behavior for El Centro horizontal ground motion

equal to two

(a) Connection shear, ChristChurch event

(c) Connection shear, Northridge event

Figure 6.13. Connection behavior using recorded horizontal and vertical ground motion
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a. Connection shear b. Connection moment

. Connection behavior for El Centro horizontal ground motion and vertical ground motion 

equal to two-thirds horizontal ground motion 

 
(a) Connection shear, ChristChurch event (b) Connection moment, ChristChurch event

 
(c) Connection shear, Northridge event (d) Connection moment, Northridge event

. Connection behavior using recorded horizontal and vertical ground motion

  

b. Connection moment 

and vertical ground motion 

 
(b) Connection moment, ChristChurch event 

 
(d) Connection moment, Northridge event 

. Connection behavior using recorded horizontal and vertical ground motion 
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The erratic behavior of the analyses presented above in 

somewhat unexpected. The actual recorded vertical accelerations used in 

an irregular moment-displacement relationship when combined with different recorded horizontal 

accelerations, and likewise the factored actual recorded horizontal accelerations used in 

might be expected to produce slightly irregular results. However, the use of a constant vertical 

acceleration is expected to merely shift the horizontal

shape, but as Figure 6.11 shows, the curves that include vertical acceleration have a significantly more 

irregular shape than the horizontal-

To investigate whether this irreg

function of time for each of the curves in 

the analyses that include vertical acceleration have a tendency to follow the horizontal

except there is a high-frequency vibration that also occu

only behavior. Further investigation of recorded horizontal and vertical accelerations from the analysis 

has revealed that there is an issue with the vertical damping in the analysis. In the horizontal direc

the damping is sufficient to prevent the high

in preventing the vertical high-frequency vibrations. While continuing investigation of this issue would 

be beneficial, the high-frequency vib

The analyses detailed in Figure 6.11

and envelope responses, and the high frequency vibration has little effect on 

the analyses are still meaningful in improving u

Figure 6.14. Connection shear history for El Centro horizontal ground motion and constant vertical 
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The erratic behavior of the analyses presented above in Figure 6.11, Figure 6.12, and 

somewhat unexpected. The actual recorded vertical accelerations used in Figure 6.13 

displacement relationship when combined with different recorded horizontal 

accelerations, and likewise the factored actual recorded horizontal accelerations used in 

might be expected to produce slightly irregular results. However, the use of a constant vertical 

acceleration is expected to merely shift the horizontal-only curve while maintaining the horizontal

shows, the curves that include vertical acceleration have a significantly more 

-only curves. 

To investigate whether this irregularity is cause for concern, the connection shear history as a 

function of time for each of the curves in Figure 6.11a is presented in Figure 6.14. This plot reveals that 

the analyses that include vertical acceleration have a tendency to follow the horizontal

frequency vibration that also occurs in addition to the lower-frequency horizontal

only behavior. Further investigation of recorded horizontal and vertical accelerations from the analysis 

has revealed that there is an issue with the vertical damping in the analysis. In the horizontal direc

the damping is sufficient to prevent the high-frequency vibrations, but the vertical damping is ineffective 

frequency vibrations. While continuing investigation of this issue would 

frequency vibrations do not drastically affect the overall response of the model. 

11, Figure 6.12, and Figure 6.13 are primarily focused on peak values 

and envelope responses, and the high frequency vibration has little effect on these overall responses, so 

the analyses are still meaningful in improving understanding of vertical acceleration effects.
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6.6.3. Comparison of the Experimental and Analytical Results 

Magnitudes of connection shear and moment demand during the experimental connection tests are 

provided in Table 6.5. “G + H” represents the load condition simulating gravity load and full horizontal 

load, based on the column overstrength moment. The next three load conditions include V0.25g, V0.75g, 

and V1.25g, with subscripts indicating the magnitude of vertical acceleration included in addition to the 

gravity and full horizontal seismic condition. The final three conditions, D1, D2, and D3, simply utilized 

large displacement conditions that were not intended to simulate specific seismic conditions. Rather, 

these conditions were utilized to fully exercise the girder-to-cap connections well beyond any expected 

earthquake loading. Percentage comparisons, identified as “%(G + H),” are included to identify how each 

load condition relates to the full gravity-plus-horizontal condition. 

Table 6.5. Connection behavior under experimental loading 

Load condition 
V (+) 

(kips) 

V (-) 

(kips) 

M (+) 

(kip-ft) 

M (-) 

(kip-ft) 

G + H 25.5 38.6 76.4 -251.3 

G + H + V0.25g 22.4 42.7 106.7 -293.4 

%(G + H) -12.2% 10.6% 39.7% 16.8% 

G + H + V0.75g 8.8 57.9 239.1 -434.4 

%(G + H) -65.5% 50.0% 213.0% 72.9% 

G + H + V1.25g -6.1 70.6 334.6 -524.8 

%(G + H) -123.9% 82.9% 338.0% 108.8% 

D1 -23.8 61.8 379.7 -824.6 

%(G + H) -193.3% 60.1% 397.0% 228.1% 

D2 -24.8 65.3 410.7 -917.6 

%(G + H) -197.3% 69.2% 437.6% 265.1% 

D3 -26.3 69.9 436.2 -1027 

%(G + H) -203.1% 81.1% 470.9% 308.7% 
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A quick look at the percentage comparisons in this table reveals the significant shear and moment 

demands that were generated (and successfully resisted) in the connection regions during the 

connection tests. Over three times the full gravity-plus-horizontal seismic moment was generated in 

both the positive and negative moment directions, and over double the positive (uplift) shear was 

generated. The lowest percentage increase exercised was in the downward shear direction, but even 

this load was over 80% higher than the full gravity-plus-horizontal seismic condition. The downward 

shear action is in fact a non-issue since this increase simply results in a more direct force transfer 

between the girder dapped end and the cap corbel; failure mechanisms related to the other three 

actions are much more likely. Thus, it appears the experimental load sequence was quite effective in 

generating connection region demands well in excess of what would be expected in a real structure. 
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Table 6.6 provides some of the analytical results in a similar format for comparison purposes. The 

results shown in this table include the runs incorporating constant vertical acceleration upwards and 

downwards, identified as “G + H + V0.5g” and “G + H – V0.5g.” The run that incorporated vertical 

acceleration with a magnitude equal to 2/3 the instantaneous horizontal acceleration is also included, 

identified as “G + H + V2/3H.” Similarly to the experimental data, the full gravity-plus-horizontal-seismic 

condition is included, labeled “G + H,” and the percentage comparisons of this load condition with the 

other load conditions are included. Noteworthy in this table is that the maximum values for positive 

shear, negative shear, and negative moment occur during one of the constant vertical acceleration load 

conditions. The only action where the V = 2/3H condition produces the maximum magnitude is positive 

moment, but even this value is only 2.1% different from the maximum constant-vertical-acceleration 

magnitude. This observation indicates that the envelope established by analyzing the constant positive 

and negative vertical accelerations may provide a suitable (and perhaps oftentimes even conservative) 

approach in considering shear and moment demands during design. 
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Table 6.6. Connection behavior from analytical models using El Centro ground motion 

Load condition 
V (+) 

(kips) 

V (-) 

(kips) 

M (+) 

(kip-ft) 

M (-) 

(kip-ft) 

El Centro 

G + H 
31.2 41.5 177.7 -161.4 

El Centro 

G + H + V0.5g 
35.0 71.2 151.8 -297.4 

%(G + H) 12.2% 71.6% -14.6% 84.3% 

El Centro 

G + H – V0.5g 
12.7 38.9 270.3 -73.6 

%(G + H) -59.3% -6.3% 52.1% -54.4% 

El Centro 

G + H + V2/3H 
7.4 69.1 274.0 -200.8 

%(G + H) -76.3% 66.5% 54.2% 24.4% 

 

Another noteworthy observation is that the maximum analytical values are considerably lower than 

the demand generated during the experimental connection test. The maximum percentage comparisons 

for positive shear, negative shear, positive moment, and negative moment are 76%, 72%, 54%, and 84%, 

respectively, all significantly lower than the corresponding experimental demand percentage 

comparisons. This observation indicates that the demand generated during the experimental work was 

sufficient to fully quantify the connection behavior. It also helps to validate the conclusion from the 

experimental work that both the GUSC and LUSC details are sufficient to ensure elastic superstructure 

behavior in high seismic regions. 

Table 6.7 provides similar comparisons as the previous two tables, but for the analytical runs that 

incorporated the actual vertical ground motion data from the Christchurch and Northridge events. The 

percentage changes from gravity/horizontal to gravity/horizontal/vertical here are consistently larger 

than either of the analyses in Table 6.6 that incorporated vertical acceleration. Observing the results the 

ChristChurch event, the percentage increase in magnitude for all four actions (positive and negative 

shear and positive and negative moment) are reasonably consistent, varying from 203% at minimum to 

a reversal of 273% at maximum. For the Northridge event, the percent increases are even higher, 
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varying from 294% to 2057% (although the 2057% number is a bit of an anomaly because of the very 

small maximum shear magnitude for the gravity/horizontal analysis).  

Table 6.7. Connection behavior using recorded vertical ground motion 

Load condition 
V (+) 

(kips) 

V (-) 

(kips) 

M (+) 

(kip-ft) 

M (-) 

(kip-ft) 

ChristChurch 

G + H 
16.5 64.9 231.5 -236.1 

ChristChurch 

G + H + V 
-45.1 131.8 560.4 -579.2 

%(G + H) -273% 203% 242% 245% 

Northridge 

G + H 
-5.6 81.9 326.6 -272.0 

Northridge 

G + H + V 
-115.2 255.0 961.8 -1152.7 

%(G + H) 2057% 311% 294% 424% 

 

Comparing how much higher these percentages are than the vertical analyses presented earlier in 

Table 6.6, it appears that the constant vertical acceleration approach and the two-thirds-horizontal 

vertical acceleration approach might not be that predictive when it comes to earthquake events with 

extremely large vertical ground motions. However, it is probably more likely that the analysis is 

producing unreasonably high results when large vertical accelerations are introduced. The high-

frequency vertical vibration that was noted earlier could play a larger role in affecting the results when 

large-magnitude vertical ground motions are introduced, unnecessarily magnifying the response. It 

would be beneficial to continue to investigate the vertical damping issue mentioned above to determine 

whether the resolution of this issue would produce more reasonable results for analyses that include 

both large horizontal and large vertical ground motions. 

6.7. Conclusions 

1. Based on the experimental and analytical results, a vertical acceleration magnitude of 0.5g 

upward produces an increase in connection shear under negative moment loading of 

approximately 36% and an increase in negative moment magnitude of approximately 67% from 
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the full gravity-plus-horizontal seismic condition. A vertical acceleration magnitude of 0.5g 

downward produces a decrease in connection shear of approximately 70% and an increase in 

positive moment of approximately 140%. Similarly, a vertical acceleration magnitude of 1.0g 

upward produces increases in shear and negative moment of 75% and 90%, respectively, and a 

vertical acceleration magnitude of 1.0g downward produces a decrease in connection shear of 

95% and an increase in positive moment of 270%. 

2. Addition of vertical acceleration does little to change the column behavior, which is largely 

dictated by horizontal ground motion and plastic hinge behavior. 

3. While vertical accelerations higher than 0.25g are likely to occur, they tend to occur non-

simultaneously with horizontal peaks. Consequently, while the 0.25g vertical acceleration 

recommendation in Caltrans’ SDC may be unconservative, it is a reasonable approximation. 

When a constant acceleration of 0.5g vertical acceleration was used, the envelope of connection 

behavior was considerably larger than the envelope produced by considering vertical ground 

motion equal to 2/3 the horizontal ground motion. 

4. Fiber-based beam-column elements with zero-length elements including strain penetration 

effects in the plastic hinge regions provide an effective analytical model for predicting overall 

horizontal force-displacement response. 

5. Two-dimensional elastic superstructure elements provide a viable way to model the girder-to-

cap connection response, including shear and moment effects. 

6. The shear and moment demand generated in the experimental connection test was 

considerably higher than seismic effects on the connections predicted by an analytical model 

incorporating gravity, horizontal ground motion, and constant vertical acceleration. Likewise, 

the experimental demand was significantly higher than the demand predicted by an analytical 

model that incorporated gravity, horizontal ground motion, and vertical ground motion equal to 

two-thirds the horizontal ground motion. The sufficiency of the GUSC and LUSC details to ensure 

elastic superstructure behavior under high seismic load and displacement, as shown by the 

experimental work, is further validated by these analytical models. 

7. The analyses that incorporated recorded vertical ground motion data from the ChristChurch and 

Northridge earthquake events did not compare well with the analysis that used constant vertical 

acceleration or the analysis that implemented two-thirds the horizontal ground motion in the 

vertical direction. While these discrepancies may indicate shortcomings in the constant 
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acceleration or two-thirds horizontal approaches, more investigation is needed to verify the 

analyses incorporating recorded vertical ground motions. 
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CHAPTER 7. PRIMARY CONCLUSIONS 

The inverted tee bridge system with appropriate girder-to-cap connections has been proposed as a 

design that is well-suited for the implementation of ABC methods in high seismic regions. Experimental 

and analytical investigations have been conducted to examine the sufficiency of the system and quantify 

various aspects of its performance under seismic loading. The following summaries describe the primary 

conclusions from the work that is presented in this dissertation. 

7.1. Inverted-tee bridge system 

The inverted-tee bridge system provides a viable design for implementing ABC methods in seismic 

regions. Dapped-end precast girders can be easily positioned on cast-in-place or precast inverted-tee 

cap beams, providing simple and efficient field erection. Cast-in-place diaphragms can be used to 

establish fixity in the connections, providing an integral superstructure. Integral connections at the 

girder-to-cap connections allow the top of the column to be detailed as a plastic hinge, providing an 

additional location for energy absorption during high seismic displacements and improving the bridge 

structure’s seismic performance. Significant moment capacity is provided by the existing Caltrans girder-

to-cap connection detail, which incorporates dowel bars that pass through the girder and are embedded 

in the cast-in-place diaphragm. However, the connection performance under seismic loading can be 

markedly improved by providing positive moment tension transfer mechanisms between the girder and 

cap beam. 

7.2. Performance of GUSC and LUSC details 

The GUSC and LUSC details offer considerable improvements to the current Caltrans girder-to-cap 

connection detail for inverted-tee-cap/dapped-end-girder bridge systems. 

In the GUSC detail, the dowel bars that are similar to the existing Caltrans detail act with the 

unstressed strand in the girder lower flange; each mechanism resists a portion of the connection 

moment. Preliminary findings from the connection test indicate that the combined dowel bar and strand 

mechanism increases the positive moment resistance by about 1.7 over what would be expected in the 

strand mechanism alone. Proposed design recommendations for the GUSC detail should take the 

combined dowel bar and strand mechanism into account, but additional investigation would be helpful 

to further quantify the performance of this mechanism and develop final design recommendations. 
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The LUSC detail utilizes looped strands that extend from the cap beam into the cast-in-place 

diaphragm along with looped strand precast in the girder web and bottom flange. Dowel bars are then 

extended through the loops, protruding from each edge of the girder, and embedded in the diaphragm 

inside the cap beam loops. Although not providing a direct tension path for positive moment, the 

mechanism significant increases the positive moment performance of the connection region. 

Both the GUSC and LUSC details were experimentally verified to provide full integral behavior up to 

seismic loading well in excess of the full gravity, horizontal column overstrength, and 1.25g vertical 

acceleration condition. The experimental work demonstrated that the connection details were capable 

of remaining elastic when subjected to connection shear and moment conditions during extreme 

seismic loading, providing an integral superstructure and allowing formation of a plastic hinge in the 

column just below the cap beam. The performance of both details exceeded current Caltrans 

requirements and showed their capability to provide robust connections suitable for incorporating ABC 

in high seismic regions.  

7.3. Integral bridge superstructure seismic load distribution 

Improvements are needed in current recommendations related to the distribution of column 

overstrength moment between interior and exterior girders in integral bridge superstructures. 

Experimental work from several large scale studies repeatedly showed that the exterior girder 

connections at the cap beam resist significant portions of the column moment due to lateral seismic 

load. The effectiveness of the exterior girders was observed at both small lateral loads as well as large 

lateral displacements. This performance is contrary to current recommendations for integral bridge 

superstructures. 

 A simple stiffness model was developed to predict the lateral load distribution between the interior 

and exterior girders. The model uses local member stiffness values and the overall structure schematic 

to develop the relative stiffness magnitudes of the interior and exterior girders. These stiffness 

comparisons are then used to predict how the lateral load will be distributed. Results from this model 

compared very well with more complex analytical techniques such as grillage and finite element models. 

The results also compared very favorably with the experimental results. The simple stiffness model can 

provide an effective approach for predicting lateral load distribution and designing girder connections in 
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integral bridges structures more appropriately, in lieu of following the overly conservative approaches 

provided in current design recommendations. 

7.4. Design recommendations for the GUSC and LUSC details 

Experimental results from the connection tests of the GUSC and LUSC details were used to begin to 

formulate design recommendations for each of the details. 

In the GUSC detail, the positive moment resistance is generated by two distinct mechanisms: shear-

friction from the interaction between the dowel bars and diaphragm concrete, and the moment capacity 

generated by the tension in the unstressed strand and the compression in the region of the girder top 

flange. Under high seismic displacements, deterioration of the diaphragm concrete decreases the 

effectiveness of the shear-friction mechanism and transfers additional moment to the strand. 

Verification of the capacity of the shear-friction mechanism will allow the strand in the GUSC detail to be 

designed to resist the additional positive moment required to provide full strength, providing a clear 

design approach for the strand in the GUSC detail. 

In the LUSC detail, the interaction between the dowel bars in flexure and the looped strands in 

confinement tension provides a viable positive moment tension transfer mechanism. A shear friction 

model considering the positive moment tension in the dowel bar region can be used to size the dowel 

bars. Subsequently, a force ratio of 1.0 between the dowel bar capacity and looped strand capacity can 

be used to size the looped strand. Further investigation is recommended to more fully quantify the 

dowel bar and looped strand behavior and finalize the design recommendations for this detail. 

7.5. Two-dimensional model for overall system seismic response 

A two-dimensional model incorporating fiber-based beam-column elements for the column and 

linear elastic elements for the superstructure works well for overall force-displacement response. A 

model using this approach was developed for the system test unit and provided excellent results for 

pushover, cyclic, and time-history loading approaches. The horizontal force-displacement responses for 

each of these analyses matched the experimental response very well. 
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7.6. Effect of vertical acceleration on integral bridge system performance 

Including vertical acceleration in the investigation of the seismic performance of the integral bridge 

system is useful. The vertical acceleration does little to affect the column performance, as the varying 

axial loads in the column do not significantly alter the column plastic hinge performance and the overall 

horizontal force-displacement response of the structure. However, the inclusion of the vertical 

acceleration makes a significant difference in the shear and moment demand generated in the girder-to-

cap connections. Including vertical accelerations of ±0.5g increases the connection shear magnitude by 

as much as 70% and increases the connection moment magnitude by as much as 140%. 

7.7. Analytical approaches for vertical acceleration simulation 

 Three different analytical approaches for simulating seismic vertical acceleration were investigated. 

The first approach utilized a constant vertical acceleration in addition to gravity and horizontal seismic 

loading. This approach is relatively simple analytically, but its usefulness is probably limited based on 

whether an appropriate vertical acceleration value can be determined. 

A second approach incorporated varying magnitudes of vertical acceleration based on the 

instantaneous magnitude of the horizontal ground motion, using recorded horizontal time-history data 

and applying vertical acceleration magnitudes equal to two-thirds the horizontal acceleration. For the 

time-histories incorporated in this study, this approach was less conservative than the constant vertical 

acceleration approach (noting that a constant vertical acceleration of 0.5g was chosen for the constant 

acceleration approach). 

The third approach incorporated recorded time-history data for both vertical and horizontal ground 

motions. For the ground motions considered in this study, this approach resulted in the largest increase 

in connection shear and moment magnitudes. However, further work is needed to refine this analysis 

and verify these findings. 
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